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Introducing example
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Data of Alzheimer symptoms [Moran et al., 2004]

Presence or absence of 6 symptoms of Alzheimer's disease (AD) in
240 patients diagnosed with early onset AD conducted in the Mercer
Institute in St. James's Hospital, Dublin.
: Hallucination, Activity, Aggression, Agitation,
Diurnal and Affective
We want to know if we can make groups of patients
suffering from the same subset of symptoms

we only study the presence of hallucinations.

Vector of size n = 240 rows : (i)i=1...n-
yi = 1 denotes the presence of hallucinations for patient 7, y; = 0 is
the absence.



Basics MCMC Deterministic appre

The Y;'s are independent and identically distributed

= 0
1-96

~— —
Il

P(Y; = yilf) = "(1 — 6)' 7, y; € {0,1}

)
Yi ~iida Bern(6)



Basics

From the observations y1,...,y, :

n
0 — 2 Yi_m
n n

where ny is the number of individuals suffering from hallucinations

it's easy to propose one.

But one considers a more complex model (see later) ?
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The likelihood of a (set of) parameter value(s), 6, given observations y is
equal to the probability of observing these data y assuming that 6 was
the generating parameter.

Uy;0) = P(Yﬁylw- n = Yn|0)

= HP = yil0)

_ HHY 1—;

= QZk 1 i( — )Zi":lliyk
9"1( —9)’7_"1
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. Calculate the “better” parameter 6,
i.e. the one maximizing the likelihood function (derivation with
respect to 6)

GMLE — arg max Uy, 0)

maximum likelihood estimator (estimation)

arg max Uy;0) = argmaxlog((y;0)

n—ng

= argmax log 0™ (1 — 0)
= arg mgax[nl log @ + (n — n1) log(1 — 6)]

Ologt(y;0) _pgom_n-m

00 0

=g 0°
(1_9),71:(,7_,71)(1—9)<:>9:’Ln1
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n n

ST o

Estimator : &=L Estimation : M
n n

Automatic estimation method

Theoretical properties well known when the number of observations
n is big

The maximization can be difficult
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: finding two bounds depending on the
observations such that this interval [u(Y), v(Y)] contains the true
parameter 6 with high probability.

Py(@elu(Y),v(iY)])=1-«

Py(pe{a— q0.05/2 q005/2 / 1_ })_095

(wikipedia) “There is a (1 — a)% probability that the
calculated confidence interval from some future experiment
encompasses the true value of the population parameter 6.”

It is a probability over Y : Y is random.

S. Donnet
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Prior and posterior
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. y is the realisation of y ~ P(Y|0)

The unknown parameter 6 is a random object and so we give him a

0~ 7(6)
Remember the

P(A[B)P(B)

P(BIA) = =5 0a

0+ B ye A

PUI0)(6)  ((yl0)(6)
POV = =50y = Ry

p(fly) is the
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ploly) = 20

p(fly) is a probability density so its “sum” over all the possible
values of 6 is equal to 1 i.e. :

prwwezl
Leading to :

Jy Uyl0)m(
=Ey —1<:>/£y\9 P(y)

P(y) is only a normalization constant also called the
(because it is the likelihood integrated over the prior
distribution). The form on 6 is given by ¢(y|0)7(6).
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As a consequence
p(Oly) oc L(y|0)m(0)

where o< should not hide factors that depend on ¢

ylolle] _ 4(y|6)m(6)

p(fly) = [0ly] = ] Ply)
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6 €1[0,1]
Prior distribution
m(0) = H[O,l](a)

Posterior distribution

Ly[6]16]

e I
X 9”1(1 — 9)”7HIH[071](9) 1
X 9 _1(1 — 9) _IH[OJ](O)

We “recognize” a Beta distribution (See Wikipedia)

1. Using the likelihood computed in slide 7


https://en.wikipedia.org/wiki/Beta_distribution

Basics

n <- length(Y)
n_1<- sum(Y[,1])
a<-1
b<-1
curve(dbeta(x,a+n_1,b+n-n_1),0,0.4,ylab="",xlab="p",
1lwd=2,col=2,ylim=c(0,20))
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Posterior densities for 6, for various sizes of the sample n (prior distribution in red)
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How to choose the prior ditribution ?

How to summarize the posterior distribution ? How to do take
decisions with the posterior distribution ?

Is it always easy to determine the posterior distribution ?
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About the prior distribution
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6 €10,1] : 6 ~ Beta(a, b)

(a, b) are hyperparameters

— Beta(112,112)

[9] X 9371(1 — H)b’ll[[071](9) E E:::;:;;:umm'me

If I don’t know anything,
a = b =1 : uniform distribution
on [0,1]

Beta density
2

[9] X H[o}l] (0)

By tuning a and b, “ a priori”
give advantage to some values :

include knowledge coming from
previous studies or experts.




Ly(6116]

Oly] = b = [yl0][0]
o 6™(1—6)"me7 (1 — 0)P g 41(6)
o« 071 - 0) “o.15(0)

We recognize
fly ~ Beta(a+ ny, b+ n—ny)
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Prior

10 15 20 25 30
L

° T T T T
00 02 04 06 08 10
[
n=50
EJ
J T T T T !
00 01 02 03 04
0

n=10
T T T T T
00 01 02 03 04
»
n=240
b
T T T T T
00 01 02 03 04




Basics

The prior distribution on 6 is updated into a posterior distribution
using the data

The posterior/prior distributions quantifies my incertitude on 6
: compromise between the prior distribution and the data

p(0ly) o m(0)t(y|6)
logp(fly) = logm(6)+ log(yl6)+ C
log p(fly) = logm(6)+ Y logt(yil6) + C

i=1

The prior distribution has an influence on the posterior distribution if
the number of observations n is small

This influence vanishes if the number of observations increases
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The prior distribution quantifies the prior (un)knowledge on 6.

In case of complete prior incertitude :
(Jeffreys : automatic construction. Improper prior)

In case of external knowledge (previous experiments, experts) :
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If we do not know anything about 6
Use an uniform prior as we did 6 ~ Ujg 1
The prior distribution can be improper i.e [ 7(6)df = co provided
the posterior distribution is a probability density

Method to create an informative prior automatically : Jeffreys’s

prior
7(0) o \/det(1(6))

where [(0) is the Fisher information (i.e. is big when the data
contain a lot of information on the parameters )

The prior gives more importance to values such that the data give a
lot of informations about it : minimizes the influence of the prior
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Summary of the posterior distribution
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From my posterior distribution

0.10- Z 3'
2 N\
w
g X
g
0.05 -
0.00 - =
0 5 10 15 20
theta
Parameter estimation Hypothesis testing 2
Credible interval Model selection?

2. Not evoked here
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Give an estimated value to 6

Once we have the posterior distribution :

Elbly] = /@ 0101y]do

P(8 < qos|ly) =05
arg maxg [0|y]

argmax [fly] = argmax log{(y|6) + log w(0) — lozF7]
0 0

n

= argmax IogH]P’(\/,\O) + log w(0)
0

i=1

= argmax E log P(Y;i]0) + log w(6)
6

i=1
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0 ~ Beta(a, b), Oly ~ Beta(a+ ny, b+ n— ny)

a+m a+m
El0|y] = =
[0ly] a+nm+b+n—m at+b+n
9‘]_ a+m-—1 _ at+n-—1
argmgx[ 4 T a+m4b+n—n—-2 a+b+n-—2

: no explicit expression

3+n1—% - a—&—nl—%
a+n1+b+nfn17§ a+b+nf%

~
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Finding the shortest (if possible) interval such that
P(0 € [a,b]ly) =1 —a

Several ways to define it :

It is the narrowest interval, which for a unimodal distribution will involve
choosing those values of highest probability density including the mode.
C ={0;m(0|y) > k} where k is the largest number such that

f"ﬂf(ély)zk w(0ly)df =1 — «
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k=3

k=2

k=1

0z L 0l S
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Values of theta Values of theta

Values of theta

S. Donnet



Be careful : if the posterior density is multi-modal, one can get the
union of 2 intervals.

Difficult to get in practice because we have to invert the density
function



Basics MCMC Determini p Importance sampling and Sequential

Choosing the interval where the probability of being below the interval is
as likely as being above it. This interval will include the median.

o |
S
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o
w
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, ‘~\_
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0.00 0.05 0.10 0.15 020

Values of theta
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Bayesian statistics are only related to statistical inference
(estimation, hypothesis testing...)

A statistical model is not Bayesian per se (except in neurosciences
where some of them consider that the brain is ITSELF Bayesian)

Bayesian inference is based on a prior distribution on the unknown
quantities (parameters, models...)

The prior distribution quantifies the knowledge on the unknown
quantities BEFORE the experiment. We can know nothing
(non-informative prior) or something from previous studies, from
experts (informative prior).

The sensibility to the prior has to be analysed to be aware of this
influence
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Bayesian decision is a large topic.

Focus of this course on the methods to obtain the posterior
distribution.
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Determining the posterior distribution
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In our example : beta prior — beta posterior

We talk about conjugate prior when the prior and the posterior
distributions are in the same family

1] [7] [01y] E[0]y]
N(,0%) [ N, ) | w®=[5+E5]T [X(L+5)
(W& + £),w?)
r(n6) | TaB) | T(a+y,B+n) i
Bin(n,0) | B(a,B8) | Bla+y,8+n—y) aj—:iﬁ
PO) | T(e.B) | Ma+y,B+1) 5



https://en.wikipedia.org/wiki/Conjugate_prior

Basics

For the exponential family of distributions, we have a conjuguate
prior — very rare in practice

For any more complex model, (such as Latent Variable models) the
posterior distribution is not explicit
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: My data y; are issued from to populations, each population having its

own mean. | do not know to which population each observation belongs.

Z;
P(Z =1)
Yi|Zi=k ~ N(u1)

m

{1,2}

1

0 = (71, pa, p2)

1

efé()’i*m)z + (]_ _ 7r1) e~ ?

(NI

(yi—p2)

o =] [wl -

i=1

N

Ty~ u[0,1]7 Mk ~ N(O7w2)7 k= 172
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[Oly] o [ylo][0]

~ H[m

1
V2

e s(i—m)® 4 (1—m) e 3(vi—m2)’ Ijo,17(71)

e 2w
wV 2T wV 2T

Non conjuguate model, posterior distribution not explicit.
How to evalute, for instance the [ 06lyldo?
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Resort to algorithms to approximate the posterior distribution.
2 approaches

. supply realizations of the posterior distribution
9(1)’ L g(m)’ L oM)

: approximate the density p(f|y) in a given
family of distribution.
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If we can simulate 6(™ ~; ;4 P(0|y) for m=1,..., M, then
& Z,A,/,lzl dowm (+) = p(-|y) (Glivenko-Cantelli theorem)

015~

h

10

5 20
theta

Law of large numbers : 3 Z:\n/’:l 6(

m)

approximates* E[f|y]
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Gibbs Sampler, Metropolis-Hastings algorithm...

: design a Markov Chain such that its stationary
distribution is the posterior distribution

Generic methods

Supplies asymptotically realizations of the posterior distribution (1),
0 M)

Made the success of the Bayesian inference
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Simulate “particles” 0, ... (™ . 9(M with a “simple”
distribution

Give weights to the particles to correct the discrepancy between the
distribution used to simulate and the posterior distribution
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Variational Bayes for instance
Approximate the density p(6]y) in a given family of distribution
Minimizes a divergence with the true posterior density.

Optimization






Some more complex models
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Assume that we want to explain the presence of hallucination by the
patient age and the moment the disease began

For any individual i, Y; = 1 if we observe hallucinations

Co-variables : X; = (A;, D;) are the age, and the moment the disease
appeared in patient i

Y; ~ Bern(p;)
pi = (D(eo + 91/4,' + (92D,‘) = CD(tX,G)

where 6 =1 (01, 0,,03) et  : R — [0, 1] is the cumulative probability
function of a A/(0,1)



6 = (0o, 61,6>)

n

6] = J]®( +61A; + 620:) (1 — &(6o + 61A; + 62D;))* "

i=1

7(0) ~ N(Ogs,wl3), or 7(f)x1

R

[01y] [yl61[¢]

o [ @00 + 01A; + 62D,)Yi(1 — (60 + 61 A; + 62D0;))* "
i=1



Orange dataset
yjj : circumference of orange tree i at age t;;
i=1,...,5 n =5.

circumference

400 800 1200
age

Tree

FN
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Logistic relation between y and

t
a
f(t;9) = m Y, _ Aj—t_a(,-BM
Gaussian noise l+e &
Individual effect of each tree g~ N(0,0%)
a ~iid N(0,w?)
bi ~iida N(0,wp)
¢ ~iia N(0,w2)
ca=(a,...,a),b=(b1,...,bs), c = (c1,
10 = (A B, C,w?,w?,w?, 0?)
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~
<
S
o
(9]
B
=
Il

HH2 \ﬁ [ — (yj — f(t,-j;A+a,-,B+b,-,C+c,-))2}

i=1 j=1

plai) = ﬁzﬂ\fex"{ 201Jaa’2}

i=1

5

H exp{ ! bz]
i 2Ty /w
5
1 1
p(c; 6) Hﬁexp {—Mqﬂ
we

p(b;0)

i1 2w b
Ly, 0) = / p(yla, b, c;0)p(a; 0)p(b;0)p(c;f)da db dc
a,b,c
Not an explicit expression = Impossible to get an expression of the

posterior distribution
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Enabled the development of Bayesian inference in the 90's

Stochastic algorithms

generates a Markov Chain #(™) whose ergodic distribution
(asymptotic, after a large number of iterations) is the distribution of
interest [0]y]

a sample (0, ... (M) from the distribution
[0]y]

this sample supplies an approximation of the
posterior distribution (so : histograms, moments, quantiles...)

1 M
Ely) = = >0 0™
m=1




Metropolis Hastings
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Belongs to the family of Monte Carlo Markov Chains

: explore the posterior distribution with a random walk using a
proposal distribution to move.

~

Let’s chose an instrumental distribution g(#’|0) which can be easily
simulated.



Initialize #(%) arbitrarily chosen

Propose a candidate 6°¢ ~ q(9C|9(’"*1))

Calculate an acceptance probability :

[6°|y] q(9(""1)|9“)}
[0(m=1]y] g(6<|6(m=1))

p(6°]0(m=)) = min {1,

Accept the candidate with probability p(6|6(™=1), i.e.

6° si u < p(6°]6(m=1)

~ (m) —
u~Upy et 0 _{9(’"—1) sinon
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(m—-1) oc
clp(m=1)y _ ,: q(0 16°)
p(6°|6 ) = min {1, 4(0<100D)

Ly 61161/ /1
[yl6tm=D][g¢m=1]/ 1

[yl6<116°]
[y[tm=D][tm=1]

Easy to compute provided | know how to evaluate the likelihood

Metropolis-Hastings : universal (can be used in a large number of
cases = models)



easy to propose a candidate : easy to simulate,
explicit probability density, with a support larger than the one of the
distribution of interest

6c=0""D 16 €~ Ny(0g,7°La)
In this case, symmetric kernel : g(8¢|0(™=1)) = q(#("=1)|9°).

The choice of the transition kernel g(-|-) strongly influences the
theoretical and practical convergence properties.



We have a look at the wonderful interactive viewer by Chi Feng.


https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana

By construction : [f|y] is stationary
Explicit transition kernel K(¢’|6)
Prove that for any Borel set A

/ /K(H’IQ)P(ﬂy)d@d@’:/ p(6'|y)de’
'eAJO 0'cA
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Kernel transition such that

0c ~ q(6°10)
Z ~ Bern(a(6°0))
0 = Z0c+(1-2)0

Let's prove that

K(0'10) = a(6']0)q(0"10) + r(0)d6(0)

where

(0)= [ (1= a(e10)q(610)d6"




For any measurable function ¢ we need E[¢(0")|0] = [ ¢(6")K(6|0)d6’

E[¢(0")|0] = Eoez[6(Z0°+ (1 — 2)0)]



For any measurable function ¢ we need E[¢(0")|0] = [ ¢(6")K(6|0)d6’

E[¢(0")|0] = Eoez[6(Z0°+ (1 — 2)0)]
= Ege z[Z¢(0°) + (1 = 2)4(0)]
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For any measurable function ¢ we need E[¢(0")|0] = [ ¢(6")K(6|0)d6’

E[p(6)16] Epe z[¢(20° + (1 = Z)0)]
Ege z[Z26(0°) + (1 = 2)¢(0)]

| )R = 16) + 6(0)e(Z = 0N a5 10)aoe
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For any measurable function ¢ we need E[¢(0")|0] = [ ¢(6")K(6|0)d6’

E[p(6)16] Epe z[¢(20° + (1 = Z)0)]

B 2126(6°) + (1~ 2)0(6)]
| )R = 16) + 6(0)e(Z = 0N a5 10)aoe

[ eterateeloyateriondst + o(6) | (1~ a(eelo)a(ecloyase
o¢ oc

r(6)
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For any measurable function ¢ we need E[¢(0")|0] = [ ¢(6")K(6|0)d6’

E[p(6)16] Epe z[¢(20° + (1 = Z)0)]

B 2126(6°) + (1~ 2)0(6)]
| )R = 16) + 6(0)e(Z = 0N a5 10)aoe

[ eterateeloyateriondst + o(6) | (1~ a(eelo)a(ecloyase
o¢ oc

r(6)

/¢ a(616)q(6'16)d6’ + r(6)6(6)
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For any measurable function ¢ we need E[¢(0")|0] = [ ¢(6")K(6|0)d6’

E[p(6)16] Epe z[¢(20° + (1 = Z)0)]

B 2126(6°) + (1~ 2)0(6)]
| )R = 16) + 6(0)e(Z = 0N a5 10)aoe

[ eterateeloyateriondst + o(6) | (1~ a(eelo)a(ecloyase
o¢ oc

r(6)

/¢ a(616)q(6'16)d6’ + r(6)6(6)
/¢ a(0/10)q(0']0) + r(0 /¢ 136(6)d6’
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For any measurable function ¢ we need E[¢(0")|0] = [ ¢(6")K(6|0)d6’

E[p(6)16] Epe z[¢(20° + (1 = Z)0)]

B 2126(6°) + (1~ 2)0(6)]
| )R = 16) + 6(0)e(Z = 0N a5 10)aoe

[ eterateeloyateriondst + o(6) | (1~ a(eelo)a(ecloyase
o¢ oc

r(6)

/ 6(0)a(0'10)q(0']0)d0’ + r(0)6(0)
/¢ a(0'10)q(0'10) + r(6 /qs )30(60)do’
= [ 0 (@10)a(0'10) + r0)50(0)



We have to prove that for any subset A,

[ [ k@ peydoar = [ p(e'ly)ar
'eAJO 0'eA



/ /K (0'10)p(6]y)dode’
0'cA

/ / A 1909010 + 10130 01y 0



/G/GA /(, K(0'10)p(0]y)dodo’
[, O @ 0a10) + O8] 0100

// La(6)a(¢']0)q(6|6)p(0]y )00’
(6,07)

=B

+//W) 1a(6)r(0)30(¢)p(6]y)dOde’

=C



/G/GA /(, K(0'10)p(0]y)dodo’
[, O @ 0a10) + O8] 0100

// La(6)a(¢']0)q(6|6)p(0]y )00’
(6,07)

=B

+//W) 1a(6)r(0)30(¢)p(6]y)dOde’

=C
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We set D = {(0,6")|p(0'|y)q(010") < p(6ly)q(0'|0)} such that
p(0’|y)a(6]0") /
a(@'10) = | s@a@e  (0:0) €D
1 ¥(6,0) € D
Note that (0,0") € D < (0',0) € D°.

We divide the B = ff 1 Ta(60")c(0'16)q(6"10)p(6ly)dOd6’ term into two
parts :

o //( ’,0)60HA(G/)Q(GI|9)q(9/|9)l3(9\y)d9d9’
! //( 1,0)eDe Ta(0")a(0'16)q(0"10)p(0y)dOd0’



Using the fact that (0,0") € D < (0,60') € D°. we make a variable
change in B, : (0,6") — (¢',0)

B = // 1a(0)p(0']y)q(0]0')do o’
(07,0)eD
By

+ / / 14(0)p(¢']y)a(6]6')d0do’
(07,0)eD

B>
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<= //(979,)HA(QI)r(€)59(9/)P(9|y)d9d9’
- /f(Q)HAW)p(@Iy)de

Jo

/ [ / (1a(9'e))q(9'e)d9'l 1a(8)p(8]y)do
Jo 0 N——-

=0,(0,0")€ D¢

//(9 0")eD (1 —a(6'10)) q(0'10)1a(0)p(0]y)dode’

// q(0'10)1a(0)p(0]y)dode’
(0,6)eD
G

- // a(0'10)q(0|0)La(0)p(61y)d6d0’ (= Bo)
(0,6")eD
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C=G-B
// (0'10)14(0)p(0]y)dOdE = // (016/)I4(0")p(0'|y)dOdE’

/ / (6'10)p(6ly)d0de’ = B+ C =By + B5+ Co — Bs
0'cA

//]IA p(6']y)q(810)d0dE + // (010')La(8")p(¢'ly)dOdE’
_ //HA (0 |y)q(60')d6de’

— [ 1a@) [ at616do o6 1)
0’ 0
—_——

=1

= [ @ yar
A

cafd



cs MCMC Determ

By construction : [f|y] is stationary

The theoretical convergence depends on the distribution of interest
and the instrumental distribution .



MCMC

For the random walk
0 =00m D p e £~ Ny(0g,721y)

7 small : we are moving very slowly in the parameters space because
the steps are small. | accept a lot but | won't visit all the parameter
space

T big : we are moving slowly in the parameter space because the
steps are big. The algorithm does not accept a lot, we are not
moving enough

7 medium’ : we reach quickly the stationary distribution



0.14 000
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<10
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i
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Chains obtained for 3 values of 7 (resp. 0.01,1.5,10). We remove a
burn-in period (25000 iterations over the total 50000 iterations)
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Target an acceptance rate of 25 % in problems of small dimension,
50% in large dimension problems.

Can also consider mixtures of kernels p1 < p2 < p3

§ ~ p1N(0, p1) + p2N (0, p2) + (1 = p1 — p2)N(0, p3)

Be careful if the parameter leaves in a constrained set.
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Let us consider the Poisson regression :

yi ~ P(wi)
|Og Mi = X,'ﬁ
B~ N(0,5%,)

Write (in R) a MCMC such that its asymptotic distribution is p(8|y).
Tune the size of the random walk to observe changes in the behavior

See codes in BayesRegressionPoisson_MH.R



Gibbs sampler
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If we want to sample a distribution p(61,...,04]y) such that all the
conditional distributions g;(61|0{_;;,y) are explicit, then the Gibbs
algorithm is :

Initialize 950) Cey 95,0)

Given the current values of
—1 —1
9§m ),...,Ggm ),

Simulate 0{™ ~ g1 (01]605" Y, ... X"V y)

Simulate Oém) ~ g2(92‘g§m)7 9§M—1) o 795/m—1)7y)
. (m) (m) p(m) p(m—1) (m=1)
Simulate 5™ ~ g5(05|6;™,0,™, 0, 00 y)

Simulate 6‘2’") ~ ga(041604™, . .. 05,"1)1,y)

The stationary distribution is the joint one p(61,...,0,|y)



MCMC

Assume that we introduce latent variables Z in the model such that
[Z]y, 6] and [f]y, Z] have an explicit form and can be easily simulated.

Initialise () et Z(©

Given the current values of Z(™™1),
g(m—1)
Simulate Z(™ ~ [Z]0(™V), y]
Simulate (™ ~ [9|Z\™, y]

We will get a sample of( )79( ))m>1 under the posterior distribution
[0, Z|y] and so marginally (™ ~ [4]y]



Explicit the kernel transition of the chain.
Prove that p(6, Z|Y) is stationary.



Ergodicity and convergence studied in [Robert and Casella, 1999].



Mixture distribution

K
Yi o~ iid Y mP()
k=1

Prior distribution

Kk~ I'(a7 ﬂ)
w ~ Dir(yv,...,v)
Posterior distribution
n K ’uy,. K K
[, piy - k| Y] o H (Z e Mk Ylfl > H WZ_I H uz‘_lefﬁ“k
i=1 \k=1 ") k=1 k=1



Latent variables version

Yi|Z = k
P(Z: = k)
(Z,17.7Z, )

with Z = HZ;:k

Conditional posterior distributions

p(p, 7Y, 2Z) oc p(Y,Z,p,m)
p(ZY,p,m) o p(Y,Z,p,m)

ii.d. P(p)
Tk

M(1,7)

p(Y|Z, p)p(Z|m)p(p)p(T)
p(Y|Z, p)p(Z|m)

&



p(ulY, Z) o< p(Y[Z; p)p(p)

e—ltz, /4

p(Y|Z, ) H

= \



p(ulY, Z) o< p(Y[Z; p1)p(n)

p(Y|Z,p) = H\} e apy o H H e My
i=1 i

k=1i=1,Z;k=1



p(ulY, Z) oc p(Y[Z; p)p(p)

p(Y|Z, 1)

e_“zf,u x H H e M

k=1i=1,Z;k=1

— Lk Nk

K
with Nk = >0, Zi, Sk =Y 11 ZiYi

K
pu) oc [T ui—te P
k=1



p(ulY, Z) o< p(Y[Z; p)p()

K K
p(plY,2) H e_“ka,Ufk H M?*]-e—ﬁﬂk
k=1 k=1

K
x H e_,“'k(Nk"Fﬁ)M?JFSk*l
k=1
pelZ,Y ~ ial(a+Sc—1,Ne+3)



p(n|Y, Z) o< p(Z|m)p(T)

p(Z|m) HﬂzH H ﬂkO(Hﬂ'k

i=1 k=1i=1|Zy=1

K
) H 771(_1
k=1

p(wlY,Z) H Nitv—1
Y, Z ~ D/r(z/—i—Nl,...,V—i—NK)



p(Z1Y,0) o p(Y|Z,u)p(Z|7)
n
o H e Mz U;;WZ;
i=1
Z; independent conditionnally to Y and Z; € {1,...,K}
P(Zi=k|Y,0) o e Mu)im,

e Vi
e Mk/*l’k Tk

K ..V
D k1 €M i TR




MCMC

Initialize 0(©) et Z(0)
Given current values of Z(m=1) 4l
Simulate Z(M ~ [Z|0" Y Y] Vi=1,...,n,YVg=1,...,G

m—1)

(M=) (Y (m—
P(Z = klY, 0" D) o et (M) Yinm Y

Simulate 6™ ~ [9|Z(m)7 Y]
e (m) _ 5

umzm T (a +5™ b+ Nim))

M|z, Y ~ Dir(N{m) L2 N,(<m) +v)




MCMC

Write the Gibbs corresponding to the SBM model

YilZi=k Zy=1~Pua) ., P(Zi=k)=m

Write the complete likelihood
Propose prior distributions
Calculate P(uu|Y, Z)
Calculate P(7|Y, 2)

Are the Z;'s independant conditionnally to Y ? How will you
proceed ?



For multidimensional distributions
Does not work if the number of parameters is variable
Constraining on the conditional distributions (have to be explicit)

No tuning of the algorithm : + and -


https://chi-feng.github.io/mcmc-demo/app.html?algorithm=GibbsSampling&target=banana

Metropolis-Hastings within Gibbs



MCMC

Convenient for latent variable models. Gibbs and Metropolis-Hastings
combined

Initialise 6 et Z(©)
Given the current values of Z(™™1 g(m=1)

On the latent variables Z

Propose Z9) ~ g(Z|Z(™=Y, g(m=1)

Accept with probability such that [Z]6, y] is the stationary

distribution
For each component of ¢

Propose 6\ ~ q(9k|9("f{ki z(m)

Accept with probability such that [0]|0_(}, Z, y] is the stationary

distribution

We will get a sample of (Z(m)7 0(’")),,,21 under the posterior distribution
[0, Z]y] and so marginally 8(™ ~ [0]y]



Many packages to automatically construct the MCMC from your
model.

Very flexible and adapted to latent variable models

Based on the writing of the model : automatically designed proposals



MCMC

WinBUGS : Bayesian inference Using Gibbs Sampling for Windows.
‘Point-and-click” windows interface version. May also be called from

R
with @ package R2WinBUGS
OpenBUGS

JAGS : Just An Other Gibbs Sampler. More recent.From :
r2JAGS or rJAGS...

STAN : developed by Andrew Gelman, coding more complex but
more powerful.


http://www.mrc-bsu.cam.ac.uk/software/
http://www.openbugs.net/w/FrontPage
http://mcmc-jags.sourceforge.net/
https://mc-stan.org/

We will have a look at the file
exempleLinearModellrispresentation.html



Tuning and assessing the convergence of MCMC



MCMC

As we saw : step-size will have a non-neglectable influence on the
convergence.
Solution : run the algorithm for a few iterations, check the
acceptance rate

If the acceptance rate is too low, decrease the step-size.

If the acceptance rate is too high, increase the step-size.

: not possible to adapt the acceptance rate along the

iterations, because in that case, it would not be a Markov Chain
anymore (theoretical convergence conditions do not hold anymore)



Period where the chain will reach the stationary distribution

Need to remove the first iterations (check the traces to calibrate)



MCMC

With our sample 81, ... (M) we want to compute expectations,
kernel density estimates of the posterior, etc...
1M
LS oot
m=1

The convergence of such estimates is ensured (LGN) if the #(™ are
independent and identically distributed.

In our case : 8(™M realisations of a Markov Chain, so not independent.

To break the dependence, : take one realization over ... (to be
set).



Must take into account
The complexity of the model (number of parameters to sample)
The burn-in period you need
The thinning parameter you need
The time you have
From 10000 to ...millions?



Plot of the chains, parameter by parameter
Plot the autocorrelations plots

Compute numerical indicators



MCMC

Relies on several chains run in parallel
Let ¢ be the index for the chain.
Must be initialized from over dispersed initial values 0<(©) with

respect to the targeted distribution.
Formulae compare the variances intra and inter chains
Within-chain variance averaged over the chains :

M C
2 1 c(m) D)2 _1 2
5“‘/\442(9 —9°) W_EZISC

Between-chain variance :

i 3y

Variance of 0|y is estimated as a weighted mean of these two

quantities
—~ M—-1 1
va(fly) = - w 4 i B.

Potential scale reduction statistic is defined by

k:«/%.

S. Donnet




MCMC

Perform a test on two parts of the chain.

Assume that the chain is of M iterations

Take Moy first iterations and May last iterations (such that
ar+ax <1

Compute the mean of 6 on the two parts

If we are at the stationary distribution, then the two means should
be equal

Correction by the variances (taking into account the dependance
between the realisations

Geweke is the Z-statistic of the test.

A z-score higher than the absolute value of 1.96 is associated with a
p-value of < .05 (two-tailed). The absolute value of Z should
therefore be lower than 1.96.






Deterministic approx.

Variational Bayes



Deterministic approx.

In a latent variable model, one wants to approximate p(Z, 0|y).
Denote §(Z,0) the approximation of p(Z,8|y).

We want to minimize

KL(4(Z,0),p(Z,0ly))

where KL is the Kullback Leibler divergence

g ply) = KL(3(Z.0). p(2.0ly)) + [ (2.0)10g ’mdedz

Cste
Minimizing KL is equivalent to maximizing
9)

Ay, 4(2.0)) = / 4(Z.,6)log "E,{ZZ@

) dodZ



Deterministic approx.

) e ply. Z
R

log p(y, Z|0) is explicit in a latent model

Choose §(Z, 0) such that J(y, §(Z,0)) can be computed
explicitely.



Deterministic approx.

Assume that

4(Z,0) = 4(Z)a(0)
(simplification)
Alternatively maximize in §(Z) and g(6)

Minimizing a functional with respect to a function — Calculus of
variations

Equivalent to iterate
4(Z) o< exp [ [ log p(y, Z16)a(0)d6]
4(0) o< w(0) exp [ [ log ply. Z16)4(2)dZ]



Deterministic approx.

Application



Deterministic approx.

We consider the following Poisson mixture model

YilZi=k ~ P(uk)
P(Zi=k) = m
Zi = lz—«

with the prior distributions :

Mk~ l‘(ak,bk)

(7T1,...,7TK) ~ Dir(el,...,eK)



Deterministic approx.

4(Z) = [, ai(Z) with &(zZ = k) =

Ea(z) llog ply, Z10)] Z Z Tik(—pk + yilog pk) + Z Tik log i + Cste

i=1 k=1
K n
= Z —Hk Zm + log pux Z’ley: +Z|og7rkzrik
k i=1 P
So
§0) o« w(0)exp [ 7y llog p(y, 2‘9)]]
K
x H e Mk 27:1 T"kp,kziyfﬂk H e*ukbk'uzk—lﬂ.ik—l
k=1 k=1
K K
x H T H *bkw,uak—
k=1 k= %/_’
T (3k,bi)
Dir(&y,...,8K)
with

n n n
& = e+ E :T"k’ 3 = ax+ E YiTik bk = b + E Tik
i=1 i=1 i=1



Deterministic approx.

Eg0) [log p(y, Z|0)] =

n K
Z Z —ZikEq(9)[11k] + ZikyiEg(o)[log k] + ZikEg(o)llog mx] + Cste
i=1 k=1

n K -
>z [—Zk + i [W(3) — log(By) + V(&) - V(3)]
k

i=1 k=1

Pik
where V is the digamma function.

§(Z) o exp {/ |ng(y72|9)a(9)d9:|
o eZ,-”:l Zf;l ZikPik

n K
o H H(eﬂik)zik
i=1 k=1
Tik = Pyz)(Zk =1) o< ek



Deterministic approx.

Algorithm (VBEM) iterates the two previously described steps.

Optimization algorithm provides an approximation of the posterior
distribution.

Quick but wrong
Under-estimate the posterior variance

If considering minimizing

KL(p(Z,0ly),d(Z,0))

Expectation Propagation EP on wikipedia


https://en.wikipedia.org/wiki/Expectation_propagation

Deterministic approx.

Calculus adapted to each model. Less universal than MCMC.

Variational bayes R Packages : LaplacesDemon by Henrik Singmann
Not working on our example



Deterministic approx.

Laplace Approximation



Deterministic approx.

Uses the Laplace approximation (Taylor extension around the MAP)
OK for Gaussian Latent Model :
Yilx,02 ~  p(-|xi,62)
x|01 ~ p(x]61) = N(0,X)
0 =(61,62) ~ p(0)

Many models are included
Exemple : generalized linear model

K
Yi ~ N(é(pi),0?) pi=a+ Zﬁkzkf
k=1

x=(a,b1,.-.,8k) ~ N(0,X)
92_ L ~ r(a7b)

T o2
Particularly adapted to spatial models



Importance sampling and Sequential



Importance sampling and Sequential

Importance sampling : basics



Importance sampling and Sequential

For any function ¢ (...),

Eojyle(0)] :/699(9) :/@ 20 n(6)

with 7 easily simulable distribution, such that its support contains
the one of 7(f|y), whose density can be computed.




p(y) without explicit expression :

/E y|0) /E(yle)ﬂw)n(a)de



Importance sampling and Sequential

- 1 L wm
Egy[p(0)] = MZ@‘P(Q('"))

F oy Wi (et
%Zﬁf:l w(m)
M

= Z WMo (9(m) avec WM =
m=1

Eoylo(0)] =



Importance sampling and Sequential

Approximate 7(6|y) by a weighted sample (A(™), W(™),_ _; s such that

om) ~ii.d. 7](')

wim — L
Zgzl wim)
(m) (m)
(™ Ly|0V)m(6V™)
n(6™)




Importance sampling and Sequential

45

40

35

25

20

15

Simulated particles, without their weights



Importance sampling and Sequential

4 2 0 2 4 6 s 4 2 0 2 4 6 s
theta_1 theta_=




Importan pling and Sequential




Importance sampling and Sequential

4 2 0 2 4 6 s 4 2 0 2 4 6 s
theta_1 theta_=




Importance sampling and Sequential

Convergence ensured by the large numbers law.

But the quality of the estimator (variance) for a given M?

Problem if some weights are very large while others are very small.
Calculus of the :

ESS= =
2 (W)

EES e [1,M].
The weighted sample (W('"),H(’")) corresponds to a no-weighted
sample of size ESS
Essential to chose 7 carefully such that £(y|0(™)z(6(™) not two
small.
Not possible in large dimension problems : need to sequentially build
n
easy estimation of p(y) par Z _ wim



Importance sampling and Sequential

Sequential Importance Sampling



Importance sampling and Sequential

Can we use the variational approximation of the posterior distribution in
a IS procedure. Can we correct its tendancy to under-estimate the
posterior variance ?

Let B be the VB posterior approximation of 7(6]y).

IS using nve as a sampling distribution

: nve has a support smaller than the one of 7(0|y)

Using a dilated version of nyg
Problems : how ? how much?

The problems of neglected dependencies remains




Importance sampling and Sequential

45

40

35

25

20

15

Particles simulated not weighted



Importance sampling and Sequential

4 2 0 2 4 6 s 4 2 0 2 4 6 s
theta_1 theta_=

o o 10 1 E “




Importance sampling and Sequential

Let a, be a increasing sequence such that ag =0 et ay = 1.
Sample sequentially

Qn _ 7"(9)

ma(0) o< 1ve(6)' " (¢(y|0)(6)) Z

using at each step n a sampling distribution 7, “judicious”.

log m,(0) = Cste + (1 — ) log nvie(8) + an log(€(y|0)m(0))
n=0:m,(0) =nve(). Easy to simulate.
n=N:m,(0) x (y|0)n(0) = =(0]y) :



Importance sampling and Sequential

Assume that at itération n, we have built 5, efficient for 7, :
o0 oM . (6)

At iteration n+ 1, we want to simulate 7, 1(6) using that previous

sample

(m)

nt1r 1€

s if T, & mhp1 simulate 05,'") in a neighbourood of ¢
using a Markovian kernel
OO ~ Kosa (057, 0,7%)

Example : 9,(1?1 = 95,'") + ¢&; with g; ~ N(0, p?)

o 7n+1(9)
wnal®) = 0)

77n+1(9n+1)Z/@Un(en)KnH(@m@nH)d@n

No explicit expression



Importance sampling and Sequential

At iteration 0, simulate 9(()1), e OéM) ~nve(:) = mo(+)

At iteration 1, use the instrumental distribution :

771(91):/67'((90)’(1(90,91)(190

At iteration N, use :

N

77N(9N) = / 77(00) H Kn(en—la en)dQO:N—l
eN-1 n—1



Importance sampling and Sequential

Prove that one can apply the previous algorithm without having to
comptue 1,(6,)
. introduce an atifical backward Markovian kernel
Ln_1(9,,,9,,_1) such that f@ Ln_l(()n,@n_l)dH,,_l =1
Sample
n—1
%n( 9n) = 7r,,(9,,) H Lk(9k+1a ek)
k=0
By properties of the ‘backward” kernel, the marginal version of
Tn(Bo,...,0,) is m,

n—1

/ ;n(ﬁg, cey0n_1,00)d00n—1 = / n(0n) H Li(Oxs1, 0k)dOo:n—1
on—1 on—1 k=0
n—1

= 7"/7(9n)/ H Lk(9k+17 ek)dQO:n—l
o177

=1

T, is defined on ©", of increasing dimension at each iteration



Importance sampling and Sequential

"1 7n(9)
Tn( 0n) = 7n(0n) [ | Li(Oks1,0k) = -2
k=0 n

Assume that at iteration n — 1 we have {W,Sm},egf’;)_l}
approximating m,_1
At time n, we propose

O™ ~ Kn(6,71.65™)

nn(907 AR 70n) = Kn(9n717 en)nnfl(e(h s 79n71)
Un-normalized weights :

%(90::1)

77n(90:n)

A’Vinfl(eo:nfl)
T]n—l(ﬁo:n—l)

= Wn—l(eo:n—l)

Wn(00:n) -




Importance sampling and Sequential

Kn(en—h en) = Kn(en—l)

Poorly efficient for complicated distributions : no learning.

9n = Hn—l +N(Oa P2)

Choice of p?? Does not use 7,
. K, such that 7, is invariant.
If mn—1 =~ 7, and the chain moves fastly then we can hope that
Nn R .
But, anyway, the divergence between 7, and 7, is corrected.
Allows to use practical knowledge and theory from MCMC



Importance sampling and Sequential

Purely artificial, but used to avoid the inegration against 7, when
calculating the weights

Price to pay : increase of the domain © — ©" and increasing of the
weight variance

Possibility to give the expression of the optimal Li’fl minimizing the
weigth variance w,(6p.,) (without explicit expression)

In practice, look for L, ~ LZTI or the one simplifying the calculus



Importance sampling and Sequential

For K, MCMC-kernel of stationnary ditribution 7,, on choose

n an— Kn on_ ,9,, n Gn— Kn Hn_ 79n
Ln—1(9n,9n_1) = T ( 1) ( 1 ) — i ( 1) ( 1 )

7T17(917) 7n(9n)
Then
Tn(0n—1)Kn(0n—1,0,)d0,_
/ Lo 1(00, 00 1)d0n 1 = fe,,,l (0n-1)Kn(0n-1,0r) 1
On_1 71',,(9,,)
= Z:EZ:; by stationarity of 7, / K,
=1



Importance sampling and Sequential

Consequences on the non-normalized weights

Wn(GO:n) - Wn—l(eo:n—l)

PO O R )
" " W ’Yn—l(en—l)
nVB(anl)l_an (E(y‘enfl)ﬂ-(enfl))w"

- ‘/'/"71(6’0”771)77v.'3(9n—1)170‘”’1(f(J/\9:7—1)7F(9r1—1))a"71

(¥[0n—1)m(0n-1) o
nve(fn-1)

12
Wn—1(90:n—1)

Do not depend on @, : can be computed before the move.



Basics MCMC Deterministic approx. Importance sampling and Sequential

Pour m=1...N, Qém) ~iid nva(+)

Calculer W(gm) =1et Wo(m) = ﬁ



Importance sampling and Sequential

Vm=1... M, calculate

W,Sm) = Wn—l(eo:n—l

m m Op—Qp—1
(m) )V(Y|9£—)1)7T(9n_)1)]
(
Deduce W,Si) and compute the effective sample size : ESS(W,SI)).
If ESS > seuil : 6™ = 6\™)
If ESS < seuil :

o ~ 3, Wé”(s{e;&l} and w{” =1¥m=1...M.

GS,m) ~ K,,(g,(,m), -) where K, is made of a kew iterations
of a MH of stationnary distribution .




Importance sampling and Sequential

At each iteration, push «,, until the ESS falls under a threshold
ESS < seuil.

Find a, such that : «a, = infosa,  {ESSh(a) < seuil} with

a—op_
o _ [ 18 me,) Ly
Wn, - T m . ’ noa T =M (m)
nvs(6\7)) >, A
1
ESSy(a) =

"M Wi s (o0 }andwﬁm)ZWm:l...M.

957"7 ~ Kn(%m), -) where K, is made of a few iterations
of a MH of stationnary distribution
7a(0) = nve(6)' = (L(y|0)(6))*"




Importance sampling and Sequential

Numerical illustration : toy example



Importance sampling and Sequential

Mixture of 4-dimensional Bernoulli distributions

n = number of individuals

K = number of mixture components

Y : observation of individual i of component j.

Zy - equal 1 if i belongs to group k. Zi ¢ = (Zi1, - .., Zix)
Vi=1,...,nVj=1...4

)//_/|Z/. ~iid Befn(Z/-’Y'J)

P(Z, = k) = Tk

0 = (m,7) with w = (71, ..., 7k) and  probability matrix of size
K x4



Importance sampling and Sequential

(r1...,mk) ~ D(1,...,1), dx € R™

Y o~ iid B(,1), (. k)e{l,....J} x{1,...,

(7T1...,7TK) ~ Dir(817...,gK), 3k€R+*

Vi ~ iid. Beta(Ekj,Ekj) ( ) € {1, .. ,J} X {1, R

Z;y, ~ Mult(T), ZT,k—l

K}

K}




Importance sampling and Sequential

N = 2000 particles

Kernel K, : 5 iterations of a standard Gibbs (explicit conditional
distributions)

ESS threshold : 1000 — 39 iterations.

Less than 5 minutes

alpha

o
= //
o -
s _—
s /
s //
° T T T

0 10 20 30

delta alpha

T
S
8
g \
8
S T T T T T T T

4 5 10 15 20 25 30 35



Importance sampling and Sequential

5 chains, 39 x 2000 iterations to respect the tame computational
budget

Chains initialized on 6(©) ~ nyp(-)
Convergence checked empirically
In the end : thining = 5. Sample of size 2000.



Importance sampling and Sequential

o [
- g g g2 ° g .
-4 § - H H g
T T T T —T T T — T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 05 08 10 00 02 04 05 08 10
=1 it °
- g7 Z o g g
= . 5 H 5 - R
& 3 ) ; )
T T T T T —T T T —T —T—T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 03 10

Black : VB, Green SMC, red MCMC

See [Donnet and Robin, 2017] for more examples






Latent variables naturally arise is many models
Require specific inference methods because

the likelihood is not explicit anymore (NLME)

the likelihood can not be computed in a reasonnable time (SBM)
we are interested in the posterior distribution of the latent variables
p(Z]y) (mixture models)



MCMC are VERY flexible tools to infer latent variable models
Universal package for ANY model

Reach their limit for models with large latent space.

For a complicated model the MCMC will require tunnings to make it

converge, SMC may be more efficient
People trying to propose universal tools for other methods to get the
posterior distribution ( for gaussian latent variable models for
instance...)

New tools gathering all the possibilities : Stan, LaplaceDemon...


https://www.r-inla.org/
https://mc-stan.org/
https://cran.r-project.org/web/packages/LaplacesDemon/index.html

Sequential monte carlo samplers.

Using deterministic approximations to accelerate smc for posterior
sampling.

Syndromes of behavioural and psychological symptoms in mild alzheimer's
disease.

Monte Carlo Statistical Methods.
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