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1. Introduction



Networks

Convenient tools to encode / represent interactions between entities

A network consists in:

= nodes/vertices which represent individuals / species / entities which
may interact or not,
= links/edges/connections which stand for an interaction between a
pair of nodes / dyads. 4



Social networks

Friendship between individuals,

= Linkedin m
Twitter ’

Co-publication between researchers

= Advices between lawyers: oriented relation

Enron email dataset

Exchanges of seeds between farmers p


https://www.cs.cmu.edu/~./enron/

Networks in ecology

= Ecosystems involve many species

= Interactions between species determine the functioning and evolution
of ecosystems

= Several types of interactions
Parasitism

Predation




Predation networks: dwebs

Pine-forest stream foodweb issued from
North-Caroline (71 species, 148 interactions)




Foodwebs: adjace matrix

= Y = (Yj)i<ij,<n = n X n matrix

= Y =1ifiis eaten by j, 0 otherwise
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Directed binary relation : Y non symetric and 0/1.



51 tree species and

Parasitism relation between n
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Parasitism




Parasitism : tree-fungus incidence matrix

n Y = (Yij)lgi,j,gn =nxp matrix
= Yj; = 1if tree i is parasited by fungus j, 0 otherwise
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Binary bipartite network: Y non square and 0/1.
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Parasitism : tree-tree network

Number of shared fungus between any pair of the
n = 51 tree species

Ulr.pp

el

Taxu‘cata
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Parasitism : weighted adjacency matrix

Yjj: number of shared fungal parasites (fungus hosted by both species)

Tree-Tree

Weighted non-oriented network: Y symetric and € N.

12



Additional information: covariates on pair of trees

For each pair of tree species, 3 distances were also measured:

= taxonomic distance (x!)
= geographic distance (x?)

= genetic distance (x3)
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Ecological questions i

Ecological aim: caracterize / understand / compare ecosystem
organizations.

= How is organized the network? Can | gather species with similar
behavior (trophic levels)?

= Do two given species play the same role in the network?

= Can we find groups of trees and fungi that are preferentially

associated?
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Ecological questions ii

= Do any of the three distances (genetic, geographic or taxonomic)
contributes to shape the number of shared parasites?

= Are the covariates sufficient to explain the interactions?
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Available data

= the network provided as:
= an adjacency matrix (for simple network) or an incidence matrix (for
bipartite network),
= a list of pair of nodes / dyads which are linked.
= some additional covariates on nodes, dyads which can account for
sampling effort.
16



Unraveling / describing / modeling the network topology.

Discovering particular structure of interaction between some subsets
of nodes.

Understanding node heterogeneity.

Not inferring the network !

17



2. Descriptive statistics

18



Some common features studied on networks

= Description of the network with some numerical indicators calculated
on each nodes, or on the complete network
= Some of them are complexe from a computational point of view:
clustering of nodes, finding shortest path from any pair of nodes...
= Specific to each domain
= Sociology: R-package sna
= Ecology: R-package bipartite
= Generalist: R-package igraph
= Vizualisation: Rpackage ggnet2

19


https://cran.r-project.org/web/packages/sna/index.html
https://cran.r-project.org/web/packages/bipartite/index.html
https://igraph.org/r/doc/aaa-igraph-package.html
https://briatte.github.io/ggnet/

Degree of nodes

Number of connexions for each node i = 1,...,n,: deg(i)=>.", Yj

moll ol m

Difference of in-degree and out-degree for oriented networks
What if the network is weighted?
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Nestedness, modularity, etc.

= Nestedness: a network is said to be nested when its nodes that have
the smallest degree, are connected to nodes with the highest degree

= In other words : specialists are connected to generalist
= |n bipartite: 7 possible ways to measure nestedness

= Modularity: is a measure for a given partition of its tendency of
favoring intra-connection over inter-connection.
= = Finding the best partition with respect to modularity criterion.

All these indicators are looking for a specific pattern.

21


https://cran.r-project.org/web/packages/bipartite/index.html

3. Probabilistic model
3.1 Stochastic Block Model
3.2 Bipartite stochastic block models

3.3 Some possible extensions

22



Probabilistic approach

= Context: our matrix Y is the realization of a stochastic process.

= Aim: Propose a stochastic process is able to mimic heterogeneity in
the connections.

= Advantage: benefit from the statistical tools (tests, model selection,
etc...)

23



A first random graph model for network

Model for n nodes

Vi<i,j<n, Y e Bern(p),

where p € [0, 1] is the probability for a link to exist.

Consequence
deg() ~j.i.a Bin(n, p)

24



Confrontation to a real network

" Not enough variability in the degree
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Limitations of an ER graph to describe real networks

= Homogeneity of the connections
= Degree distribution too concentrated, no high degree nodes,
= All nodes are equivalent (no nestedness...),

= No modularity, no hubs

26



3. Probabilistic model

3.1 Stochastic Block Model
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Stochastic Block Model

Let (Yj;) be an adjacency matrix

= The nodes i = 1,...,n are partitionned into K clusters
= Z; = k if node i belongs to cluster (block) k

= Z; independant variables

P(Z; = k) = m

(Y}) independant and

Y,'J'|Z,',Z_,'NBel’n(OéZl.,zj) =4 P(\/,J:”Z,:k,z_,:g):()/k/
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Stochastic Block Model : illustration

Oé..
Moo
/ ! Let n nodes divided into 3 clusters
o @ ..

= K ={o,0, 0} clusters

" me=P(ice),ec K, i=1...,n

o \& s e =P(i s jli€e,jEe)

Zi = l{iEo} ~id M(]'?Tr)? Ve € ’Ca
Yj | {i€e,je e}~ Blas)
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SBM : A great generative model

= Generative model : easy to simulate
= No a priori on the type of structure

= Combination of modularity, nestedness, etc...
References

= Other ways to model heterogeneity in networks
[Matias, Catherine and Robin, Stéphane, 2014]

= Review paper on SBM [Lee and Wilkinson, 2019]
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Modelling communities

0.45 0.05 0.05
p=| 005 0.45 0.05 v = (0.25,0.5,0.25)
0.05 0.05 0.45
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Modelling foodwebs

0.10 0.02 0.02 0.02
0.50 0.10 0.02 0.02
0.50 0.40 0.10 0.02
0.02 0.40 0.40 0.10

v = (0.2,.25,0.30,0.25)
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3. Probabilistic model

3.2 Bipartite stochastic block models

B



Probabilistic model for binary bipartite networks

Tree-Fungis
Fungis
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Requires adaptation to bipartite networks: blocks for rows and cols 5



Probabilistic model for binary bipartite networks

Let Y be a bi-partite network. Individuals in row and cols are not the
same.

= Nodes i =1,...,n partitionned into K clusters, nodes j =1,...,p
partitionned into L clusters

Z; = k if node i belongs to cluster (block) k
W; = ¢ if node j belongs to cluster (block) ¢

» (Zi)i=1,...ns (Wj)j=1,...p independent variables

P(Z; = k) = m, P(W;=20)=p,

35]



Probabilistic model for binary bipartite networks

(Yj) independent and

YilZi, W; ~ Bern(az,w,) & P(Y;j=1Zi=k W;=1)=aun

Also called Latent Block Models

36



3. Probabilistic model

3.3 Some possible extensions

37



Valued-edge networks

Information on edges can be something different from presence/absence.

It can be:
1. a count of the number of observed interactions,
2. a quantity interpreted as the interaction strength,
1. Poisson distribution: Yj | {i € «,j € o} ~" P()\.,),
2. Gaussian distribution: Yj; | {i € «,j € o} ~" N(pu.e,0?),
3. More generally,

Yi | {i€e,j€ e}~ F(b.s)

38



Multiplex networks

Several kind of interactions between nodes For instance :

= Love and friendship

= Working relations and friendship

= In ecology : mutualistic and competition
Y; €{0,1}9 = (Y%, Yb) Vw € {0,1}?

P(YZ, Yy =w|Zi =k, Z; = () = af),

1y

In when two relations are at stake.

Remark: a particular case of multiplex network is dynamic network,

39



Taking into account covariates

Sometimes covariates are available. They may be on:

= nodes,
= edges,
= both.

1. They can be used a posteriori to explain blocks inferred by SBM.

2. Extension of the SBM which takes into account covariates. Blocks
are structure of interaction which is not explained by covariates !

If covariates are sampling conditions, case 2 be may more interesting.

40



SBM with covariates

= As before : (Y};) be an adjacency matrix
= Let xJ € RP denote covariates describing the pair (i, )

= The nodes i =1,...,n are partitioned into K clusters

= Z; independent variables

(Y}) independent and

YilZi,Z; ~ Bern(logit(az,z +0 - x;)) if binary data
YilZi,Z; ~ P(exp(az,z +0-x;)) if counting data

If K =1: all the connection heterogeneity is explained by the covariates.
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4. Inference
4.1 Parameters estimation

4.2 Model selection

42
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Statistical Inference

= Selection of the number of clusters
= K for SBM , K and L for bipartite SBM

= Estimation of the parameters (7, 8) for a given number of clusters

= Clustering y4

Presented in details for binary SBM.
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4. Inference

4.1 Parameters estimation

46



Likelihood for SBM

(Y,2;0) = p(Y|Z;a)p(Z;7)

= HfaZ:ZJ(KJ) X H']'('Zi

i#

_ Yi 1-Yj
= laz;0-az2)7"]]
iJ i

log ((Y;0) =log > (c(Y,Z; 6 (1)
ZcZ
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Marginal likelihood : remark

log £(Y; 0) =log > Lc(Y,Z; 0
yASH-A

Z={1,...,K}" — when K and n increase, impossible to compute.

. EM algorithm.

48



From EM to variational EM

At iteration (t) :

e Step E: compute
QI8 V) =E [log c(Y, Z; 0)]

e Step M:
0(t) = arg max QA1)

49



Limitations of standard EM i

Step E requires the computation of E [log (Y, Z; 0)]

loglc(Y,Z;0) = log Ha;’f’;zj(l—az,,zj)l_y” + log
i#]

K
= Z Z [Vijlog ake + (1 — V) log(1 — auke)]
i k=1
n,K
+ Z Zix log Tk
i, k=1

11|

with Zy = ]-Z,-:k

50



Limitations of standard EM ii

= However, once conditioned by par Y, the Z are not independent
anymore

p(Z|Y,0¢D) £ [ p(Z Y, 07D)
=il
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Variational EM : maximization of a lower bound

: replace the complicated distribution p(:|Y;#0) = [Z]Y, 6] by a
simpler one.

Let Ry, - be any distribution on Z

Zo(Ry,r) = logl(Y;0) — KL[Ry,-, p(|Y;0)]
= Ex, [logl(Y,Z;6 ]—ZRY )log Ry +(Z)
= Ep, [logt(Y,Z; )]+’H(RY,T(2))
Note that:

Zo(Ry ) = log {(Y;0) < Ry . = p(-|Y; 0)

52



By Bayes

log £c(Y,Z;6) log p(Z|Y; 0) + log ¢(Y; 0)
log¢(Y;0) = logl.(Y,Z;0)— logp(Z]Y;0)

By integration against Ry :

Er, [logf(Y;0)] Er, [loglc(Y,Z;0)] —Er, [logp(Z]Y;0)]
logl(Y;0) = Ern, [logl(Y,Z;0)] —Ex, [logp(Z|Y;0)]

53



As a consequence:

TZo(Ryr) =
= Egp, [logl(Y,Z;0)] —Er, [logp(Z]Y;0)]

log £(Y;8) — KL[Ry -, p(-|Y; 0)]

Ry +(2)
" {"’g bZIY; 9)]
E [log.(Y,Z;0)] — E [log p(Z]Y; 0)]
—Er, [logRy (Z)] +Ex,  [logp(Z]Y;0)]

H(Ry,+(Z))

54



Variational EM

= Maximization of log £(Y;0) w.r.t. 6 replaced by maximization of the
lower bound Zy(Ry ;) w.r.t. 7 and 6.

= Benefit : we choose Ry . such that the maximization calculus can
be done explicitly

= In our case: mean field approximation : neglect dependencies
between the (Z;)
Pry . (Zi = k) = Ti
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Variational EM

At iteration (t), given the current value (G(tfl),RYJ(FU),

e Step 1 Maximization w.r.t. 7

() _— st
T arngn€a7>5 o1 (Ry.r)

arg mea%]E log (Y, Z; Q(t_l))} +H (Ry -(Z))

Note that

0 = ag max log £(Y; 0¢~V) — KL[Ry -, p(-|Y; 8¢ ~D)]
TE

= in KL[Ry ., p(-]Y: 0t
arg min KL[Ry -, p(:| )]
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Variational EM

e Step 2 Maximization w.r.t. #

00 = arg max Zg(Ry,-v)
= arg meaxE [log (Y, Z;0)] +H (Ry,fu)(z))
= arg meaxE llog ¢.(Y,Z;0)]

57



Details of the VE-step for binary SBM i

7® = argmin KL[Ry -, p(-]Y; 0 1)] = arg max Zyi—n (Ry.-) -

(we drop out the index (t=1) on 6)

Ty(Ry:) = Y Ryr(Z)loglc(Y,Z;0)—> Ry.,(Z)logRy.~(Z),
4 z
with
n K n K
|Og€C(Y7Z;9) = Z,'ijg |ng(Y,'j|akg)+ZZZ,'k log 7k
ij=1,i#j k,0=1 i=1 k=1

58



Details of the VE-step for binary SBM i

Integration of the Z where Z ~ Ry,

n K

n K
T(Rvs) = Y. Y Tamielogp(Yilowe) + > > Tixlog m

ij=1,i#j k,t=1 i=1 k=1

Maximization under the constraint: Vi =1...n, Zle Tik = 1.

= Derivatives of

n K
Zo(Ry ) + Z)\i [Z Tik — 11

with respect to ()\,'),':1“.,7 and (T,'k),'zlmn’kzlmK where \; are the
Lagrange multipliers,
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Details of the VE-step for binary SBM iii

= Leads to collection of equations: for i=1...nand k=1...K,

K n
Z Z log p(Yij|ake)Tje + log mk — log T + 1+ A; =0,
(=1 j=1j#i

= Leads to the following fixed point problem:

n K
Tu=e"a, J[ [[p(Yilewe)™, Vi=1...nVk=1...K,
J=1,j#i£=1

which has to be solved under the constraints Vi =1...n,
Zle Tik = 1. This optimization problem is solved using a standard
fixed point algorithm.
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Details of the M-step for binary SBM i

0 = arg max Zy (Ry,-0)

under the constraints: S5_, 4 = 1.

Maximization with respect to 7 is quite direct:
1
Tq =" Z Tik
i=1
For the Bernoulli SBM:

n o~ o~
~ Zi,j:l,i;éj TikTje Yij

Ay = n ~ ~
Z/‘,j:l,i;éj TikTje
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Details of the M-step for binary SBM ii

If the edge probabilities depend on covariates:
logit(pke) = ake + B - xjj,

then the optimization of (a¢) and (3) at step M of the VEM is not
explicit anymore and one should resort to optimization algorithms such as

Newton-Raphson algorithm.
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In practice

= Really fast

= Strongly depend on the initial values
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4. Inference

4.2 Model selection

64



Penalized likelihood criterion

= Selection of the number of clusters K (or Ky, K> in the LBM)
= Integrated Classification Likelihood (ICL)

ICL(Mk) = log £(Y, Z; fk) — pen(M) (2)
where
Z; = argmax fu. (3)
ke{l,...,K}

= Integrated Complete Likelihood (ICL)

ICL(Mk) = E, v 40 llog ¢c(Y, Z; Ox) — pen(Mk) (4)

65



Expression of the penalization for SBM

= For directed network
1
peny = {(K —1)log(n) + K*log (n* — n) }
= For undirected network

1

penm = 5 (K — 1)Iog(n)+w log (n 2—n>

66



Expression of the penalization for bipartite SBM

pen — —% (Ky — 1) log(m) + (K» — 1) log(ns) + (K1K») log(nim)

67



Advantages of ICL

= its capacity to outline the clustering structure in networks
= Involves a trade-off between goodness of fit and model complexity

= |CL values : goodness of fit AND clustering sharpness.

68



Comments on the ICL versus BIC

\
BIC(M) = logl(Y;8, M) — pen(M)
with the same penalty
= Under this conjecture
ICL(M) = BIC(M)+ > p(Z|Y:0k)log p(Z|Y:; bk)
z

= BIC(M) = H(p(-]Y;0))

= As a consequence, because of the entropy, ICL will encourage
clustering with well-separated groups

ICL(M) = BIC(M)+Y_ Rv(Z,7) log Ry ~(Z)—KL[R, ~ p(-|Y; )]

7 69



Algorithm in practice

= Going trough the models and initiate VEM at the same time
= Bounds on K : {Kmin,- -, Kmax }

Starting from K
= Split : if K < Kiax
= Maximize the likelihood (lower bound) of Mk.1
= K initializations of the VEM are proposed : split each cluster into 2
clusters
= Merge : If K > Kpnin

= Maximize the likelihood (lower bound) of model Mk_;
. w initializations of the VEM are proposed : merging all the

possible pairs of clusters
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Theoretical properties for SBM

= lIdentifiability and a first consistency result by [Celisse et al., 2012]

= Consistency of the posterior distribution of the latent variables
[Mariadassou and Matias, 2015]

= Consistency and properties of the variational estimators
[Bickel et al., 2013]
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Other extensions

Time evolving networks

Multipartite, Multiplexe networks (

)
= Multilevel networks (individuals and organizations)
( )

Missing data in the network

72



Probabilistic model for networks in a nutshell

SBM/LBM

= generative models,
= flexible,

= comprehensive models which can be linked to a lot of classical
descriptors.

73



Now it's time
to practice! o

<]>"

Comprehensive R package available on CRAN and Github gathering
several block models and there in references with vignettes.

Photo from this site
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https://grosssbm.github.io/sbm/
http://androiddeveloper.galileo.edu/android-tutorial/time-to-practice-java-for-android-development/
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