Stochastic block models for networks

Applications in ecology

Sophie Donnet, INRA巳, MIA Paris-Saclay

Aug. 2023

My collaborators

On the R packages

Other collaborators

T. Vanrenterghem (INRAE), S. Robin (Sorbonne U.), E. Lazega (Sciences Po), F. Massol (CNRS), S. Kefi (CNRS) + ANR Econet + ANR Pastodiv + GDR Resodiv

1. Introduction
2. Descriptive statistics
3. Probabilistic model
4. Inference

Networks

Convenient tools to encode / represent interactions between entities

A network consists in:

- nodes/vertices which represent individuals / species / entities which may interact or not,
- links/edges/connections which stand for an interaction between a pair of nodes / dyads.

Social networks

- Friendship between individuals,
- Linkedin in
- Twitter
- Co-publication between researchers
- Advices between lawyers: oriented relation
- Enron email dataset
- Exchanges of seeds between farmers p

Networks in ecology

- Ecosystems involve many species
- Interactions between species determine the functioning and evolution of ecosystems
- Several types of interactions

Pollination

Predation networks: foodwebs

[Thompson and Townsend, 2003] Pine-forest stream foodweb issued from North-Caroline (71 species, 148 interactions)

Foodwebs: adjacency matrix

- $Y=\left(Y_{i j}\right)_{1 \leq i, j, \leq n}=n \times n$ matrix
- $Y_{i j}=1$ if i is eaten by $j, 0$ otherwise

Directed binary relation: Y non symetric and $0 / 1$.

Parasitism : tree-fungus network

[Vacher et al., 2008] Parasitism relation between $n=51$ tree species and $p=154$ fungus species

Nodes of two types: bipartite network

Parasitism : tree-fungus incidence matrix

- $Y=\left(Y_{i j}\right)_{1 \leq i, j, \leq n}=n \times p$ matrix
- $Y_{i j}=1$ if tree i is parasited by fungus $j, 0$ otherwise

Tree-Fungis

[^0]
Parasitism : tree-tree network

[Vacher et al., 2008] Number of shared fungus between any pair of the

 $n=51$ tree speciesUlmus spp

Parasitism : weighted adjacency matrix

$Y_{i j}$: number of shared fungal parasites (fungus hosted by both species)

Weighted non-oriented network: Y symetric and $\in \mathbb{N}$.

Additional information: covariates on pair of trees

For each pair of tree species, 3 distances were also measured:

- taxonomic distance (x^{1})
- geographic distance $\left(x^{2}\right)$
- genetic distance $\left(x^{3}\right)$

Ecological questions i

\rightarrow Ecological aim: caracterize / understand / compare ecosystem organizations.

Foodwebs

- How is organized the network? Can I gather species with similar behavior (trophic levels)?
- Do two given species play the same role in the network?

Fungus-tree networks

- Can we find groups of trees and fungi that are preferentially associated?

Ecological questions if

Parasite networks between trees

- Do any of the three distances (genetic, geographic or taxonomic) contributes to shape the number of shared parasites?
- Are the covariates sufficient to explain the interactions?

Available data

- the network provided as:
- an adjacency matrix (for simple network) or an incidence matrix (for bipartite network),
- a list of pair of nodes / dyads which are linked.
- some additional covariates on nodes, dyads which can account for sampling effort.

Goal

- Unraveling / describing / modeling the network topology.
- Discovering particular structure of interaction between some subsets of nodes.
- Understanding node heterogeneity.
- Not inferring the network !

1. Introduction

2. Descriptive statistics
3. Probabilistic model
4. Inference

Some common features studied on networks

- Description of the network with some numerical indicators calculated on each nodes, or on the complete network
- Some of them are complexe from a computational point of view: clustering of nodes, finding shortest path from any pair of nodes...
- Specific to each domain
- Sociology: R-package sna
- Ecology: R-package bipartite
- Generalist: R-package igraph
- Vizualisation: Rpackage ggnet2

Degree of nodes

Number of connexions for each node $i=1, \ldots, n,: \operatorname{deg}(i)=\sum_{i=1}^{n} Y_{i j}$

Remarks Difference of in-degree and out-degree for oriented networks 。 What if the network is weighted?

Nestedness, modularity, etc.

- Nestedness: a network is said to be nested when its nodes that have the smallest degree, are connected to nodes with the highest degree [Rodríguez-Gironés and Santamaría, 2006]
- In other words: specialists are connected to generalist
- In bipartite: 7 possible ways to measure nestedness
- Modularity: is a measure for a given partition of its tendency of favoring intra-connection over inter-connection.
- \Rightarrow Finding the best partition with respect to modularity criterion. [Clauset et al., 2008]

All these indicators are looking for a specific pattern.

1. Introduction
2. Descriptive statistics
3. Probabilistic model
3.1 Stochastic Block Model
3.2 Bipartite stochastic block models
3.3 Some possible extensions
4. Inference

Probabilistic approach

- Context: our matrix Y is the realization of a stochastic process.
- Aim: Propose a stochastic process is able to mimic heterogeneity in the connections.
- Advantage: benefit from the statistical tools (tests, model selection, etc...)

A first random graph model for network

Erdős-Rényi (1959) Model for n nodes

$$
\forall 1 \leq i, j \leq n, \quad Y_{i j} \stackrel{i . i . d .}{\sim} \mathcal{B e r n}(p),
$$

where $p \in[0,1]$ is the probability for a link to exist.

Consequence

$$
\operatorname{deg}(i) \sim_{i, i . d} \mathcal{B} \operatorname{in}(n, p)
$$

Confrontation to a real network

- Not enough variability in the degree

Limitations of an ER graph to describe real networks

- Homogeneity of the connections
- Degree distribution too concentrated, no high degree nodes,
- All nodes are equivalent (no nestedness...),
- No modularity, no hubs

1. Introduction

2. Descriptive statistics
3. Probabilistic model
3.1 Stochastic Block Model
3.2 Bipartite stochastic block models
3.3 Some possible extensions
4. Inference

Stochastic Block Model

[Nowicki and Snijders, 2001] Let ($Y_{i j}$) be an adjacency matrix

Latent variables

- The nodes $i=1, \ldots, n$ are partitionned into K clusters
- $Z_{i}=k$ if node i belongs to cluster (block) k
- Z_{i} independant variables

$$
\mathbb{P}\left(Z_{i}=k\right)=\pi_{k}
$$

Conditionally to $\left(Z_{i}\right)_{i=1, \ldots, n} \ldots$

($Y_{i j}$) independant and

$$
Y_{i j} \mid Z_{i}, Z_{j} \sim \operatorname{Bern}\left(\alpha_{Z_{i}, Z_{j}}\right) \quad \Leftrightarrow \quad P\left(Y_{i j}=1 \mid Z_{i}=k, Z_{j}=\ell\right)=\alpha_{k \ell}
$$

Stochastic Block Model : illustration

SBM : A great generative model

- Generative model : easy to simulate
- No a priori on the type of structure
- Combination of modularity, nestedness, etc...

References

- Other ways to model heterogeneity in networks [Matias, Catherine and Robin, Stéphane, 2014]
- Review paper on SBM [Lee and Wilkinson, 2019]

Modelling communities

$$
p=\left(\begin{array}{ccc}
\underline{0.45} & 0.05 & 0.05 \\
0.05 & \underline{0.45} & 0.05 \\
0.05 & 0.05 & \underline{0.45}
\end{array}\right) \quad \nu=(0.25,0.5,0.25)
$$

Modelling foodwebs

$$
p=\left(\begin{array}{cccc}
0.10 & 0.02 & 0.02 & 0.02 \\
\underline{0.50} & 0.10 & 0.02 & 0.02 \\
\underline{0.50} & \underline{0.40} & 0.10 & 0.02 \\
0.02 & \underline{0.40} & \underline{0.40} & 0.10
\end{array}\right) \quad \nu=(0.2, .25,0.30,0.25)
$$

1. Introduction

2. Descriptive statistics
3. Probabilistic model
3.1 Stochastic Block Model
3.2 Bipartite stochastic block models
3.3 Some possible extensions
4. Inference

Probabilistic model for binary bipartite networks

Requires adaptation to bipartite networks: blocks for rows and cols

Probabilistic model for binary bipartite networks

Let $Y_{i j}$ be a bi-partite network. Individuals in row and cols are not the same.

Latent variables: bi-clustering

- Nodes $i=1, \ldots, n$ partitionned into K clusters, nodes $j=1, \ldots, p$ partitionned into L clusters

$$
\begin{array}{ll}
Z_{i}=k & \text { if node } i \text { belongs to cluster (block) } k \\
W_{j}=\ell & \text { if node } j \text { belongs to cluster (block) } \ell
\end{array}
$$

- $\left(Z_{i}\right)_{i=1, \ldots, n},\left(W_{j}\right)_{j=1, \ldots, p}$ independent variables

$$
\mathbb{P}\left(Z_{i}=k\right)=\pi_{k}, \quad \mathbb{P}\left(W_{j}=\ell\right)=\rho_{\ell}
$$

Probabilistic model for binary bipartite networks

Conditionally to $\left(W_{i}\right)_{i=1, \ldots, n},\left(W_{j}\right)_{j=1, \ldots, p \ldots}$

$\left(Y_{i j}\right)$ independent and

$$
Y_{i j} \mid Z_{i}, W_{j} \sim \mathcal{B e r n}\left(\alpha_{Z_{i}, W_{j}}\right) \quad \Leftrightarrow \quad \mathbb{P}\left(Y_{i j}=1 \mid Z_{i}=k, W_{j}=\ell\right)=\alpha_{k \ell}
$$

Also called Latent Block Models [Govaert and Nadif, 2008]

1. Introduction

2. Descriptive statistics
3. Probabilistic model
3.1 Stochastic Block Model
3.2 Bipartite stochastic block models
3.3 Some possible extensions
4. Inference

Valued-edge networks

Values-edges networks

Information on edges can be something different from presence/absence. It can be:

1. a count of the number of observed interactions,
2. a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM

1. Poisson distribution: $Y_{i j} \mid\{i \in \bullet, j \in \bullet\} \sim^{\text {ind }} \mathcal{P}\left(\lambda_{\bullet \bullet}\right)$,
2. Gaussian distribution: $Y_{i j} \mid\{i \in \bullet, j \in \bullet\} \sim$ ind $\mathcal{N}\left(\mu_{\bullet \bullet}, \sigma^{2}\right)$, [Mariadassou et al., 2010]
3. More generally,

$$
Y_{i j} \mid\{i \in \bullet, j \in \bullet\} \sim^{\text {ind }} \mathcal{F}\left(\theta_{\bullet \bullet}\right)
$$

Multiplex networks

Several kind of interactions between nodes For instance :

- Love and friendship
- Working relations and friendship
- In ecology : mutualistic and competition

Block model for multiplex networks

$$
Y_{i j} \in\{0,1\}^{Q}=\left(Y_{i j}^{a}, Y_{i j}^{b}\right), \forall w \in\{0,1\}^{2}
$$

$$
\mathbb{P}\left(Y_{i j}^{a}, Y_{i j}^{b}=w \mid Z_{i}=k, Z_{j}=\ell\right)=\alpha_{k \ell}^{w}
$$

[Kéfi et al., 2016], [Barbillon et al., 2017]
In R package: blockmodels when two relations are at stake.
Remark: a particular case of multiplex network is dynamic network, [Matias and Miele, 2017].

Taking into account covariates

Sometimes covariates are available. They may be on:

- nodes,
- edges,
- both.

1. They can be used a posteriori to explain blocks inferred by SBM.
2. Extension of the SBM which takes into account covariates. Blocks are structure of interaction which is not explained by covariates !

If covariates are sampling conditions, case 2 be may more interesting.

SBM with covariates

- As before: $\left(Y_{i j}\right)$ be an adjacency matrix
- Let $x^{i j} \in \mathbb{R}^{p}$ denote covariates describing the pair (i, j)

Latent variables : as before

- The nodes $i=1, \ldots, n$ are partitioned into K clusters
- Z_{i} independent variables

$$
\mathbb{P}\left(Z_{i}=k\right)=\pi_{k}
$$

Conditionally to $\left(Z_{i}\right)_{i=1, \ldots, n \ldots}$

$\left(Y_{i j}\right)$ independent and

$$
\begin{aligned}
& Y_{i j} \mid Z_{i}, Z_{j} \sim \mathcal{B e r n}\left(\operatorname{logit}\left(\alpha_{Z_{i}, Z_{j}}+\theta \cdot x_{i j}\right)\right) \quad \text { if binary data } \\
& Y_{i j} \mid Z_{i}, Z_{j} \sim \mathcal{P}\left(\exp \left(\alpha_{Z_{i}, Z_{j}}+\theta \cdot x_{i j}\right)\right) \quad \text { if counting data }
\end{aligned}
$$

If $K=1$: all the connection heterogeneity is explained by the covariates.

1. Introduction
2. Descriptive statistics
3. Probabilistic model
4. Inference
4.1 Parameters estimation
4.2 Model selection

Aim

Going from...

Aim

Statistical Inference

- Selection of the number of clusters
- K for SBM, K and L for bipartite SBM
- Estimation of the parameters $(\pi, \boldsymbol{\theta})$ for a given number of clusters
- Clustering Ẑ

Presented in details for binary SBM.

1. Introduction
2. Descriptive statistics
3. Probabilistic model
4. Inference

4.1 Parameters estimation

4.2 Model selection

Likelihood for SBM

Complete likelihood (\mathbf{Y}) et (\mathbf{Z})

$$
\begin{aligned}
\ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta) & =p(\mathbf{Y} \mid \mathbf{Z} ; \boldsymbol{\alpha}) p(\mathbf{Z} ; \pi) \\
& =\prod_{i \neq j} f_{\alpha_{z_{i}, z_{j}}}\left(Y_{i j}\right) \times \prod_{i} \pi_{z_{i}} \\
& =\prod_{i, j} \alpha_{Z_{i}, Z_{j}}^{Y_{i j}}\left(1-\alpha_{Z_{i}, z_{j}}\right)^{1-Y_{i j}} \prod_{i} \pi_{Z_{i}}
\end{aligned}
$$

Marginal likelihood (Y)

$$
\begin{equation*}
\log \ell(\mathbf{Y} ; \theta)=\log \sum_{\mathbf{Z} \in \mathcal{Z}} \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta) . \tag{1}
\end{equation*}
$$

Marginal likelihood : remark

$$
\log \ell(\mathbf{Y} ; \theta)=\log \sum_{\mathbf{Z} \in \mathcal{Z}} \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)
$$

Remark

$\mathcal{Z}=\{1, \ldots, K\}^{n} \Rightarrow$ when K and n increase, impossible to compute.

Standard tool to maximize the likelihood when latent variables

 involved: EM algorithm.
From EM to variational EM

Standard EM

At iteration (t) :

- Step E: compute

$$
Q\left(\theta \mid \theta^{(t-1)}\right)=\mathbb{E}_{\mathrm{Z} \mid \mathrm{Y}, \theta^{(t-1)}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]
$$

- Step M:

$$
\theta^{(t)}=\arg \max _{\theta} Q\left(\theta \mid \theta^{(t-1)}\right)
$$

Limitations of standard EM

Step E requires the computation of $\mathbb{E}_{Z \mid Y, \theta(t-1)}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]$

$$
\begin{aligned}
\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)= & \log \left[\prod_{i \neq j} \alpha_{Z_{i}, Z_{j}}^{Y_{i j}}\left(1-\alpha_{Z_{i}, Z_{j}}\right)^{1-Y_{i j}}\right]+\log \left[\prod_{i} \pi_{Z_{i}}\right] \\
= & \sum_{i \neq j} \sum_{k, \ell=1}^{K} Z_{i k} Z_{j \ell}\left[Y_{i j} \log \alpha_{k \ell}+\left(1-Y_{i j}\right) \log \left(1-\alpha_{k \ell}\right)\right] \\
& +\sum_{i, k=1}^{n, K} Z_{i k} \log \pi_{k}
\end{aligned}
$$

with $Z_{i k}=\mathbf{1}_{Z_{i}=k}$

Limitations of standard EM ii

- However, once conditioned by par \mathbf{Y}, the \mathbf{Z} are not independent anymore

$$
p\left(\mathbf{Z} \mid \mathbf{Y}, \theta^{(t-1)}\right) \neq \prod_{i=1}^{n} p\left(Z_{i} \mid \mathbf{Y}, \theta^{(t-1)}\right)
$$

Variational EM : maximization of a lower bound

Idea : replace the complicated distribution $p(\cdot \mid \mathbf{Y} ; \theta)=[\mathbf{Z} \mid \mathbf{Y}, \theta]$ by a simpler one.

Let $\mathcal{R}_{\mathbf{Y}, \tau}$ be any distribution on \mathbf{Z}

Central identity

$$
\begin{aligned}
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right) & =\log \ell(\mathbf{Y} ; \theta)-\mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \tau}, p(\cdot \mid \mathbf{Y} ; \theta)\right] \leq \log \ell(\mathbf{Y} ; \theta) \\
& =\mathbb{E}_{\mathcal{R}_{\mathbf{Y}, \tau}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]-\sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z}) \log \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z}) \\
& =\mathbb{E}_{\mathcal{R}_{Y, \tau}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]+\mathcal{H}\left(\mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z})\right)
\end{aligned}
$$

Note that:

$$
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)=\log \ell(\mathbf{Y} ; \theta) \Leftrightarrow \mathcal{R}_{\mathbf{Y}, \tau}=p(\cdot \mid \mathbf{Y} ; \theta)
$$

Proof i

By Bayes

$$
\begin{aligned}
\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta) & =\log p(\mathbf{Z} \mid \mathbf{Y} ; \theta)+\log \ell(\mathbf{Y} ; \theta) \\
\log \ell(\mathbf{Y} ; \theta) & =\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)-\log p(\mathbf{Z} \mid \mathbf{Y} ; \theta)
\end{aligned}
$$

By integration against $\mathcal{R}_{\mathbf{Y}, \tau}$:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{R}_{Y, T}}[\log \ell(\mathbf{Y} ; \theta)] & =\mathbb{E}_{\mathcal{R}_{Y, T}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]-\mathbb{E}_{\mathcal{R}_{Y, T}}[\log p(\mathbf{Z} \mid \mathbf{Y} ; \theta)] \\
\log \ell(\mathbf{Y} ; \theta) & =\mathbb{E}_{\mathcal{R}_{Y, T}, T}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]-\mathbb{E}_{\mathcal{R}_{Y, T}}[\log p(\mathbf{Z} \mid \mathbf{Y} ; \theta)]
\end{aligned}
$$

Proof if

As a consequence:

$$
\left.\begin{array}{rl}
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)= & \log \ell(\mathbf{Y} ; \theta)-\mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \tau}, p(\cdot \mid \mathbf{Y} ; \theta)\right] \\
= & \mathbb{E}_{\mathcal{R}_{Y}, \tau}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]-\mathbb{E}_{\mathcal{R}_{Y}, \tau}[\log p(\mathbf{Z} \mid \mathbf{Y} ; \theta)] \\
& -\mathbb{E}_{\mathcal{R}_{Y}, \tau}\left[\log \frac{\mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{Y} ; \theta)}\right] \\
= & \mathbb{E}_{\mathcal{R}_{Y}, \tau}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]-\mathbb{E}_{\mathcal{R}_{Y}, \tau}[\log p(\mathbf{Z} \mid \mathbf{Y} ; \theta)] \\
& -\underbrace{\mathbb{E}_{\mathcal{R}_{Y}, \tau}}_{\mathcal{H}\left(\mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z})\right)}\left[\log \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z})\right]
\end{array}+\mathbb{E}_{\mathcal{R}_{Y, \tau}}[\log p(\mathbf{Z} \mid \mathbf{Y} ; \theta)]\right]
$$

Variational EM

- Maximization of $\log \ell(\mathbf{Y} ; \theta)$ w.r.t. θ replaced by maximization of the lower bound $\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)$ w.r.t. τ and θ.
- Benefit : we choose $\mathcal{R}_{\mathbf{Y}, \tau}$ such that the maximization calculus can be done explicitly
- In our case: mean field approximation : neglect dependencies between the $\left(Z_{i}\right)$

$$
P_{\mathcal{R}_{\mathbf{Y}, \tau}}\left(Z_{i}=k\right)=\tau_{i k}
$$

Variational EM

Algorithm

At iteration (t), given the current value $\left(\theta^{(t-1)}, \mathcal{R}_{\mathbf{Y}, \tau^{(t-1)}}\right)$,

- Step 1 Maximization w.r.t. τ

$$
\begin{aligned}
\tau^{(t)} & =\arg \max _{\tau \in \mathcal{T}} \mathcal{I}_{\theta^{(t-1)}}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right) \\
& =\arg \max _{\tau \in \mathcal{T}} \mathbb{E}_{\mathcal{R}_{Y, \tau}}\left[\log \ell_{c}\left(\mathbf{Y}, \mathbf{Z} ; \theta^{(t-1)}\right)\right]+\mathcal{H}\left(\mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z})\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
\tau^{(t)} & =\arg \max _{\tau \in \mathcal{T}} \log \ell\left(\mathbf{Y} ; \theta^{(t-1)}\right)-\mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \tau}, p\left(\cdot \mid \mathbf{Y} ; \theta^{(t-1)}\right)\right] \\
& =\arg \min _{\tau \in \mathcal{T}} \mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \tau}, p\left(\cdot \mid \mathbf{Y} ; \theta^{(t-1)}\right)\right]
\end{aligned}
$$

Variational EM

Algorithm

- Step 2 Maximization w.r.t. θ

$$
\begin{aligned}
\theta^{(t)} & =\arg \max _{\theta} \mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau^{(t)}}\right) \\
& =\arg \max _{\theta} \mathbb{E}_{\mathcal{R}_{\mathbf{Y}, \tau^{(t)}}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]+\mathcal{H}\left(\mathcal{R}_{\mathbf{Y}, \tau^{(t)}}(\mathbf{Z})\right) \\
& =\arg \max _{\theta} \mathbb{E}_{\mathcal{R}_{\mathbf{Y}, \tau^{(t)}}}\left[\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)\right]
\end{aligned}
$$

Details of the VE-step for binary SBM i

$$
\tau^{(t)}=\arg \min _{\tau} \mathrm{KL}\left[\mathcal{R}_{\mathbf{Y}, \tau}, p\left(\cdot \mid \mathbf{Y} ; \theta^{(t-1)}\right)\right]=\arg \max _{\tau} \mathcal{I}_{\theta^{(t-1)}}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)
$$

(we drop out the index ${ }^{(t-1)}$ on θ)

$$
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)=\sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z}) \log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)-\sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z}) \log \mathcal{R}_{\mathbf{Y}, \tau}(\mathbf{Z})
$$

with

$$
\log \ell_{c}(\mathbf{Y}, \mathbf{Z} ; \theta)=\sum_{i, j=1, i \neq j}^{n} \sum_{k, \ell=1}^{K} Z_{i k} Z_{j \ell} \log p\left(Y_{i j} \mid \alpha_{k \ell}\right)+\sum_{i=1}^{n} \sum_{k=1}^{K} Z_{i k} \log \pi_{k}
$$

Details of the VE-step for binary SBM ii

Integration of the \mathbf{Z} where $\mathbf{Z} \sim \mathcal{R}_{\mathbf{Y}, \tau}$

$$
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)=\sum_{i, j=1, i \neq j}^{n} \sum_{k, \ell=1}^{K} \tau_{i q} \tau_{j \ell} \log p\left(Y_{i j} \mid \alpha_{k \ell}\right)+\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{i k} \log \pi_{k}
$$

Maximization under the constraint: $\forall i=1 \ldots n, \sum_{k=1}^{K} \tau_{i k}=1$.

- Derivatives of

$$
\mathcal{I}_{\theta}\left(\mathcal{R}_{\mathbf{Y}, \tau}\right)+\sum_{i=1}^{n} \lambda_{i}\left[\sum_{k=1}^{K} \tau_{i k}-1\right]
$$

with respect to $\left(\lambda_{i}\right)_{i=1 \ldots n}$ and $\left(\tau_{i k}\right)_{i=1 \ldots n, k=1 \ldots K}$ where λ_{i} are the Lagrange multipliers,

Details of the VE-step for binary SBM iif

- Leads to collection of equations: for $i=1 \ldots n$ and $k=1 \ldots K$,

$$
\sum_{\ell=1}^{K} \sum_{j=1, j \neq i}^{n} \log p\left(Y_{i j} \mid \alpha_{k \ell}\right) \tau_{j \ell}+\log \pi_{k}-\log \tau_{i k}+1+\lambda_{i}=0
$$

- Leads to the following fixed point problem:

$$
\widehat{\tau}_{i k}=e^{1+\lambda_{i}} \alpha_{k} \prod_{j=1, j \neq i}^{n} \prod_{\ell=1}^{K} p\left(Y_{i j} \mid \alpha_{k \ell}\right)^{\widehat{\tau}_{j \ell}}, \quad \forall i=1 \ldots n, \forall k=1 \ldots K
$$

which has to be solved under the constraints $\forall i=1 \ldots n$, $\sum_{k=1}^{K} \tau_{i k}=1$. This optimization problem is solved using a standard fixed point algorithm.

Details of the M-step for binary SBM

$$
\theta^{(t)}=\arg \max _{\theta} \mathcal{I}_{\theta^{(t)}}\left(\mathcal{R}_{\mathbf{Y}, \tau^{(t)}}\right)
$$

under the constraints: $\sum_{k=1}^{k} \pi_{k}=1$.
Maximization with respect to π is quite direct:

$$
\widehat{\pi}_{q}=\frac{1}{n} \sum_{i=1}^{n} \widehat{\tau}_{i k}
$$

For the Bernoulli SBM:

$$
\widehat{\alpha}_{k \ell}=\frac{\sum_{i, j=1, i \neq j}^{n} \widehat{\tau}_{i k} \widehat{\tau}_{j \ell} Y_{i j}}{\sum_{i, j=1, i \neq j}^{n} \widehat{\tau}_{i k} \widehat{\tau}_{j \ell}}
$$

Details of the M-step for binary SBM if

If the edge probabilities depend on covariates:

$$
\operatorname{logit}\left(p_{k \ell}\right)=\alpha_{k \ell}+\beta \cdot x_{i j},
$$

then the optimization of $\left(\alpha_{k \ell}\right)$ and (β) at step M of the VEM is not explicit anymore and one should resort to optimization algorithms such as Newton-Raphson algorithm.

In practice

- Really fast
- Strongly depend on the initial values

1. Introduction
2. Descriptive statistics
3. Probabilistic model
4. Inference
4.1 Parameters estimation
4.2 Model selection

- Selection of the number of clusters K (or K_{1}, K_{2} in the LBM)
- Integrated Classification Likelihood (ICL) [Biernacki et al., 2000]

$$
\begin{equation*}
I C L\left(\mathcal{M}_{\mathbf{K}}\right)=\log \ell_{c}\left(\mathbf{Y}, \hat{\mathbf{Z}}^{;} \hat{\theta}_{\mathbf{K}}\right)-\operatorname{pen}\left(\mathcal{M}_{\mathbf{K}}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{Z}_{i}=\underset{k \in\{1, \ldots, K\}}{\arg \max } \hat{\tau}_{i k} . \tag{3}
\end{equation*}
$$

- Integrated Complete Likelihood (ICL)

$$
\begin{equation*}
I C L\left(\mathcal{M}_{\mathbf{K}}\right)=\mathbb{E}_{p\left(\cdot \mid \mathbf{Y}, \hat{\theta}_{\mathbf{K}}\right)}\left[\log \ell_{c}\left(\mathbf{Y}, \hat{\mathbf{Z}}_{;} \hat{\theta}_{\mathbf{K}}\right)-\operatorname{pen}\left(\mathcal{M}_{\mathbf{K}}\right)\right. \tag{4}
\end{equation*}
$$

Expression of the penalization for SBM

- For directed network

$$
\text { pen }_{\mathcal{M}}=\frac{1}{2}\left\{(K-1) \log (n)+K^{2} \log \left(n^{2}-n\right)\right\}
$$

- For undirected network

$$
\operatorname{pen}_{\mathcal{M}}=\frac{1}{2}\{\underbrace{(K-1) \log (n)}_{\text {Clust. }}+\frac{K(K+1)}{2} \log \left(\frac{n^{2}-n}{2}\right)\}
$$

Expression of the penalization for bipartite SBM

$$
\text { pen }_{\mathcal{M}}=-\frac{1}{2}\{\underbrace{\left(K_{1}-1\right) \log \left(n_{1}\right)+\left(K_{2}-1\right) \log \left(n_{2}\right)}_{\text {Bi-Clust. }}+\underbrace{\left(K_{1} K_{2}\right) \log \left(n_{1} n_{2}\right)}_{\text {Connection }}\}
$$

Advantages of ICL

- its capacity to outline the clustering structure in networks
- Involves a trade-off between goodness of fit and model complexity
- ICL values : goodness of fit AND clustering sharpness.

Comments on the ICL versus BIC

Conjecture

$$
B I C(\mathcal{M})=\log \ell(\mathbf{Y} ; \hat{\theta}, \mathcal{M})-\operatorname{pen}(\mathcal{M})
$$

with the same penalty

- Under this conjecture

$$
\begin{aligned}
I C L(\mathcal{M}) & =B I C(\mathcal{M})+\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{Y} ; \hat{\theta}_{\mathbf{K}}\right) \log p\left(\mathbf{Z} \mid \mathbf{Y} ; \hat{\theta}_{\mathbf{K}}\right) \\
& =B I C(\mathcal{M})-\mathcal{H}(p(\cdot \mid \mathbf{Y} ; \theta))
\end{aligned}
$$

- As a consequence, because of the entropy, ICL will encourage clustering with well-separated groups

$$
\widehat{I C L}(\mathcal{M})=B I C(\mathcal{M})+\sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{Y}}(\mathbf{Z}, \widehat{\tau}) \log \mathcal{R}_{\mathbf{Y}, \widehat{\tau}}(\mathbf{Z})-\mathbf{K L}\left[\mathcal{R}_{\mathbf{Y}, \widehat{\tau}}, p(\cdot \mid \mathbf{Y} ; \widehat{\theta})\right] .
$$

Algorithm in practice

- Going trough the models and initiate VEM at the same time
- Bounds on K : $\left\{K_{\min }, \ldots, K_{\max }\right\}$

Stepwise procedure

Starting from K

- Split : if $K<K_{\text {max }}$
- Maximize the likelihood (lower bound) of \mathcal{M}_{K+1}
- K initializations of the VEM are proposed : split each cluster into 2 clusters
- Merge: If $K>K_{\text {min }}$
- Maximize the likelihood (lower bound) of model \mathcal{M}_{K-1}
- $\frac{K(K-1)}{2}$ initializations of the VEM are proposed : merging all the possible pairs of clusters

Theoretical properties for SBM

- Identifiability and a first consistency result by [Celisse et al., 2012]
- Consistency of the posterior distribution of the latent variables [Mariadassou and Matias, 2015]
- Consistency and properties of the variational estimators [Bickel et al., 2013]

Other extensions

- Time evolving networks Matias
- Multipartite, Multiplexe networks (R-package sbm, Bar-Hen, Barbillon, Donnet)
- Multilevel networks (individuals and organizations) (Chabbert-Liddell)
- Missing data in the network [Tabouy et al., 2019]

Probabilistic model for networks in a nutshell

SBM/LBM

- generative models,
- flexible,
- comprehensive models which can be linked to a lot of classical descriptors.

Now it's time to practice!

Comprehensive R package available on CRAN and Github gathering several block models and there in references with vignettes.
https://grosssbm.github.io/sbm/
Photo from this site

References

Barbillon, P., Donnet, S., Lazega, E., and Bar-Hen, A. (2017).
Stochastic block models for multiplex networks: an application to a multilevel network of researchers.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(1):295-314.

Bickel, P., Choi, D., Chang, X., Zhang, H., et al. (2013).
Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels.
The Annals of Statistics, 41(4):1922-1943.

Biernacki, C., Celeux, G., and Govaert, G. (2000).
Assessing a mixture model for clustering with the integrated completed likelihood.
IEEE transactions on pattern analysis and machine intelligence, 22(7):719-725.

Celisse, A., Daudin, J.-J., and Pierre, L. (2012).
Consistency of maximum-likelihood and variational estimators in the stochastic block model.
Electronic Journal of Statistics, 6:1847-1899.

Clauset, A., Moore, C., and Newman, M. E. (2008).
Hierarchical structure and the prediction of missing links in networks.
Nature, 453(7191):98.

Govaert, G. and Nadif, M. (2008).
Block clustering with bernoulli mixture models: Comparison of different approaches.
Computational. Statistics and Data Analysis, 52(6):3233-3245.

References if

Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., and Berlow, E. L. (2016).
How structured is the entangled bank? the surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience.
PLOS Biology, 14(8):1-21.

Lee, C. and Wilkinson, D. J. (2019).
A review of stochastic block models and extensions for graph clustering.
Applied Network Science, 4:122.

Mariadassou, M. and Matias, C. (2015).
Convergence of the groups posterior distribution in latent or stochastic block models.
Bernoulli, 21(1):537-573.

Mariadassou, M., Robin, S., and Vacher, C. (2010).
Uncovering latent structure in valued graphs: a variational approach.
The Annals of Applied Statistics, 4(2):715-742.

Matias, C. and Miele, V. (2017).
Statistical clustering of temporal networks through a dynamic stochastic block model.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):1119-1141.

Matias, Catherine and Robin, Stéphane (2014).
Modeling heterogeneity in random graphs through latent space models: a selective review*.
ESAIM: Proc., 47:55-74.

References iif

Nowicki, K. and Snijders, T. A. B. (2001).
Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, 96(455):1077-1087.

Rodríguez-Gironés, M. and Santamaría, L. (2006).
Rodríguez-gironés ma, santamaría l.. a new algorithm to calculate the nestedness temperature of presence-absence matrices. j biogeogr 33: 924-935.
Journal of Biogeography, 33:924-935.

Tabouy, T., Barbillon, P., and Chiquet, J. (2019).
Variational inference for stochastic block models from sampled data.
Journal of the American Statistical Association, pages 1-23.

Thompson, R. M. and Townsend, C. R. (2003).
Impacts on stream food webs of native and exotic forest: An intercontinental comparison.
Ecology, 84(1):145-161.

Vacher, C., Piou, D., and Desprez-Loustau, M. L. (2008).
Architecture of an antagonistic tree/fungus network: The asymmetric influence of past evolutionary history.
PLoS ONE, 3.

[^0]: Binary bipartite network: Y non square and $0 / 1$.

