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Networks

Convenient tools to encode / represent interactions between entities

A network consists in:

• nodes/vertices which represent individuals / species / entities which
may interact or not,

• links/edges/connections which stand for an interaction between a
pair of nodes / dyads. 4



Social networks

• Friendship between individuals,

• Linkedin
• Twitter
• Co-publication between researchers
• Advices between lawyers: oriented relation
• Enron email dataset
• Exchanges of seeds between farmers p
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Networks in ecology

• Ecosystems involve many species
• Interactions between species determine the functioning and evolution

of ecosystems
• Several types of interactions

Predation

Parasitism

Pollination
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Predation networks: foodwebs

[Thompson and Townsend, 2003] Pine-forest stream foodweb issued from
North-Caroline (71 species, 148 interactions)
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Foodwebs: adjacency matrix

• Y = (Yij)1≤i,j,≤n = n × n matrix
• Yij = 1 if i is eaten by j , 0 otherwise

Directed binary relation : Y non symetric and 0/1.
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Parasitism : tree-fungus network

[Vacher et al., 2008] Parasitism relation between n = 51 tree species and
p = 154 fungus species

Nodes of two types: bipartite network
9



Parasitism : tree-fungus incidence matrix

• Y = (Yij)1≤i,j,≤n = n × p matrix
• Yij = 1 if tree i is parasited by fungus j , 0 otherwise

Binary bipartite network: Y non square and 0/1.
10



Parasitism : tree-tree network

[Vacher et al., 2008] Number of shared fungus between any pair of the
n = 51 tree species
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Parasitism : weighted adjacency matrix

Yij : number of shared fungal parasites (fungus hosted by both species)

Weighted non-oriented network: Y symetric and ∈ N.
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Additional information: covariates on pair of trees

For each pair of tree species, 3 distances were also measured:

• taxonomic distance (x1)
• geographic distance (x2)
• genetic distance (x3)
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Ecological questions i

→ Ecological aim: caracterize / understand / compare ecosystem
organizations.

Foodwebs
• How is organized the network? Can I gather species with similar

behavior (trophic levels)?
• Do two given species play the same role in the network?

Fungus-tree networks
• Can we find groups of trees and fungi that are preferentially

associated?
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Ecological questions ii

Parasite networks between trees
• Do any of the three distances (genetic, geographic or taxonomic)

contributes to shape the number of shared parasites?
• Are the covariates sufficient to explain the interactions?
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Available data

• the network provided as:
• an adjacency matrix (for simple network) or an incidence matrix (for

bipartite network),
• a list of pair of nodes / dyads which are linked.

• some additional covariates on nodes, dyads which can account for
sampling effort.
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Goal

• Unraveling / describing / modeling the network topology.
• Discovering particular structure of interaction between some subsets

of nodes.
• Understanding node heterogeneity.
• Not inferring the network !
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Some common features studied on networks

• Description of the network with some numerical indicators calculated
on each nodes, or on the complete network

• Some of them are complexe from a computational point of view:
clustering of nodes, finding shortest path from any pair of nodes...

• Specific to each domain
• Sociology: R-package sna
• Ecology: R-package bipartite
• Generalist: R-package igraph
• Vizualisation: Rpackage ggnet2
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Degree of nodes

Number of connexions for each node i = 1, . . . , n,: deg(i) =
∑n

i=1 Yij

Remarks Difference of in-degree and out-degree for oriented networks •
What if the network is weighted?
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Nestedness, modularity, etc.

• Nestedness: a network is said to be nested when its nodes that have
the smallest degree, are connected to nodes with the highest degree
[Rodríguez-Gironés and Santamaría, 2006]

• In other words : specialists are connected to generalist
• In bipartite: 7 possible ways to measure nestedness

• Modularity: is a measure for a given partition of its tendency of
favoring intra-connection over inter-connection.

• ⇒ Finding the best partition with respect to modularity criterion.
[Clauset et al., 2008]

All these indicators are looking for a specific pattern.
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Probabilistic approach

• Context: our matrix Y is the realization of a stochastic process.
• Aim: Propose a stochastic process is able to mimic heterogeneity in

the connections.
• Advantage: benefit from the statistical tools (tests, model selection,

etc...)
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A first random graph model for network

Erdős-Rényi (1959) Model for n nodes

∀1 ≤ i , j ≤ n, Yij
i.i.d.∼ Bern(p),

where p ∈ [0, 1] is the probability for a link to exist.

Consequence
deg(i) ∼i.i.d Bin(n, p)
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Confrontation to a real network

‘ Not enough variability in the degree
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Limitations of an ER graph to describe real networks

• Homogeneity of the connections
• Degree distribution too concentrated, no high degree nodes,
• All nodes are equivalent (no nestedness...),
• No modularity, no hubs
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Stochastic Block Model

[Nowicki and Snijders, 2001] Let (Yij) be an adjacency matrix

Latent variables
• The nodes i = 1, . . . , n are partitionned into K clusters
• Zi = k if node i belongs to cluster (block) k
• Zi independant variables

P(Zi = k) = πk

Conditionally to (Zi)i=1,...,n...
(Yij) independant and

Yij |Zi , Zj ∼ Bern(αZi ,Zj ) ⇔ P(Yij = 1|Zi = k, Zj = ℓ) = αkℓ
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Stochastic Block Model : illustration

A1 A2

A3

α••

B1

B2

B3

B4

B5

α••

C1

C2

α••

α••

α••

α••

Parameters
Let n nodes divided into 3 clusters

• K = {•, •, •} clusters

• π• = P(i ∈ •), • ∈ K, i = 1, . . . , n

• α•• = P(i ↔ j|i ∈ •, j ∈ •)

Zi = 1{i∈•} ∼iid M(1, π), ∀• ∈ K,

Yij | {i ∈ •, j ∈ •} ∼ind B(α••)
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SBM : A great generative model

• Generative model : easy to simulate
• No a priori on the type of structure
• Combination of modularity, nestedness, etc...

References

• Other ways to model heterogeneity in networks
[Matias, Catherine and Robin, Stéphane, 2014]

• Review paper on SBM [Lee and Wilkinson, 2019]
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Modelling communities

p =

 0.45 0.05 0.05
0.05 0.45 0.05
0.05 0.05 0.45

 ν = (0.25, 0.5, 0.25)
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Modelling foodwebs

p =


0.10 0.02 0.02 0.02
0.50 0.10 0.02 0.02
0.50 0.40 0.10 0.02
0.02 0.40 0.40 0.10

 ν = (0.2, .25, 0.30, 0.25)
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Probabilistic model for binary bipartite networks

Requires adaptation to bipartite networks: blocks for rows and cols
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Probabilistic model for binary bipartite networks

Let Yij be a bi-partite network. Individuals in row and cols are not the
same.

Latent variables : bi-clustering
• Nodes i = 1, . . . , n partitionned into K clusters, nodes j = 1, . . . , p

partitionned into L clusters
•

Zi = k if node i belongs to cluster (block) k
Wj = ℓ if node j belongs to cluster (block) ℓ

• (Zi)i=1,...,n, (Wj)j=1,...,p independent variables

P(Zi = k) = πk , P(Wj = ℓ) = ρℓ
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Probabilistic model for binary bipartite networks

Conditionally to (Wi)i=1,...,n, (Wj)j=1,...,p...
(Yij) independent and

Yij |Zi , Wj ∼ Bern(αZi ,Wj ) ⇔ P(Yij = 1|Zi = k, Wj = ℓ) = αkℓ

Also called Latent Block Models [Govaert and Nadif, 2008]
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Valued-edge networks

Values-edges networks
Information on edges can be something different from presence/absence.
It can be:

1. a count of the number of observed interactions,
2. a quantity interpreted as the interaction strength,

Natural extensions of SBM and LBM
1. Poisson distribution: Yij | {i ∈ •, j ∈ •} ∼ind P(λ••),
2. Gaussian distribution: Yij | {i ∈ •, j ∈ •} ∼ind N (µ••, σ2),

[Mariadassou et al., 2010]
3. More generally,

Yij | {i ∈ •, j ∈ •} ∼ind F(θ••)
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Multiplex networks

Several kind of interactions between nodes For instance :

• Love and friendship
• Working relations and friendship
• In ecology : mutualistic and competition

Block model for multiplex networks
Yij ∈ {0, 1}Q = (Y a

ij , Y b
ij ), ∀w ∈ {0, 1}2

P(Y a
ij , Y b

ij = w |Zi = k, Zj = ℓ) = αw
kℓ

[Kéfi et al., 2016], [Barbillon et al., 2017]

In R package: blockmodels when two relations are at stake.

Remark: a particular case of multiplex network is dynamic network,
[Matias and Miele, 2017].
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Taking into account covariates

Sometimes covariates are available. They may be on:

• nodes,
• edges,
• both.

1. They can be used a posteriori to explain blocks inferred by SBM.
2. Extension of the SBM which takes into account covariates. Blocks

are structure of interaction which is not explained by covariates !

If covariates are sampling conditions, case 2 be may more interesting.
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SBM with covariates

• As before : (Yij) be an adjacency matrix
• Let x ij ∈ Rp denote covariates describing the pair (i , j)

Latent variables : as before
• The nodes i = 1, . . . , n are partitioned into K clusters
• Zi independent variables

P(Zi = k) = πk

Conditionally to (Zi)i=1,...,n...
(Yij) independent and

Yij |Zi , Zj ∼ Bern(logit(αZi ,Zj + θ · xij)) if binary data
Yij |Zi , Zj ∼ P(exp(αZi ,Zj + θ · xij)) if counting data

If K = 1 : all the connection heterogeneity is explained by the covariates.
41
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Aim

Going from...
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Aim

... to
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Statistical Inference

• Selection of the number of clusters
• K for SBM , K and L for bipartite SBM

• Estimation of the parameters (π, θ) for a given number of clusters
• Clustering Ẑ

Presented in details for binary SBM.
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Likelihood for SBM

Complete likelihood (Y) et (Z)

ℓc(Y, Z; θ) = p(Y|Z; α)p(Z; π)
=

∏
i ̸=j

fαZi ,Zj
(Yij) ×

∏
i

πZi

=
∏
i,j

α
Yij
Zi ,Zj

(1 − αZi ,Zj )1−Yij
∏

i
πZi

Marginal likelihood (Y)

log ℓ(Y; θ) = log
∑
Z∈Z

ℓc(Y, Z; θ) . (1)
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Marginal likelihood : remark

log ℓ(Y; θ) = log
∑
Z∈Z

ℓc(Y, Z; θ) .

Remark
Z = {1, . . . , K}n ⇒ when K and n increase, impossible to compute.

Standard tool to maximize the likelihood when latent variables
involved : EM algorithm.
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From EM to variational EM

Standard EM
At iteration (t) :

• Step E: compute

Q(θ|θ(t−1)) = EZ|Y,θ(t−1) [log ℓc(Y, Z; θ)]

• Step M:
θ(t) = arg max

θ
Q(θ|θ(t−1))
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Limitations of standard EM i

Step E requires the computation of EZ|Y,θ(t−1) [log ℓc(Y, Z; θ)]

•

log ℓc(Y, Z; θ) = log

∏
i ̸=j

α
Yij
Zi ,Zj

(1 − αZi ,Zj )1−Yij

 + log
[∏

i
πZi

]

=
∑
i ̸=j

K∑
k,ℓ=1

ZikZjℓ [Yij log αkℓ + (1 − Yij) log(1 − αkℓ)]

+
n,K∑

i,k=1
Zik log πk

with Zik = 1Zi =k
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Limitations of standard EM ii

• However, once conditioned by par Y, the Z are not independent
anymore

Z1

Z2

Z3

Y12 Y13

Y21 Y23

Y31 Y32

p(Z|Y, θ(t−1)) ̸=
n∏

i=1
p(Zi |Y, θ(t−1))
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Variational EM : maximization of a lower bound

Idea : replace the complicated distribution p(·|Y; θ) = [Z|Y, θ] by a
simpler one.

Let RY,τ be any distribution on Z

Central identity

Iθ(RY,τ ) = log ℓ(Y; θ) − KL[RY,τ , p(·|Y; θ)] ≤ log ℓ(Y; θ)
= ERY,τ

[log ℓc(Y, Z; θ)] −
∑

Z
RY,τ (Z) log RY,τ (Z)

= ERY,τ
[log ℓc(Y, Z; θ)] + H (RY,τ (Z))

Note that:

Iθ(RY,τ ) = log ℓ(Y; θ) ⇔ RY,τ = p(·|Y; θ)
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Proof i

By Bayes

log ℓc(Y, Z; θ) = log p(Z|Y; θ) + log ℓ(Y; θ)
log ℓ(Y; θ) = log ℓc(Y, Z; θ) − log p(Z|Y; θ)

By integration against RY,τ :

ERY,τ
[log ℓ(Y; θ)] = ERY,τ

[log ℓc(Y, Z; θ)] − ERY,τ
[log p(Z|Y; θ)]

log ℓ(Y; θ) = ERY,τ
[log ℓc(Y, Z; θ)] − ERY,τ

[log p(Z|Y; θ)]
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Proof ii

As a consequence:

Iθ(RY,τ ) = log ℓ(Y; θ) − KL[RY,τ , p(·|Y; θ)]
= ERY,τ

[log ℓc(Y, Z; θ)] − ERY,τ
[log p(Z|Y; θ)]

−ERY,τ

[
log RY,τ (Z)

p(Z|Y; θ)

]
= ERY,τ

[log ℓc(Y, Z; θ)] − ERY,τ
[log p(Z|Y; θ)]

−ERY,τ
[log RY,τ (Z)]︸ ︷︷ ︸

H(RY,τ (Z))

+ERY,τ
[log p(Z|Y; θ)]
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Variational EM

• Maximization of log ℓ(Y; θ) w.r.t. θ replaced by maximization of the
lower bound Iθ(RY,τ ) w.r.t. τ and θ.

• Benefit : we choose RY,τ such that the maximization calculus can
be done explicitly

• In our case: mean field approximation : neglect dependencies
between the (Zi )

PRY,τ (Zi = k) = τik
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Variational EM

Algorithm
At iteration (t), given the current value (θ(t−1), RY,τ (t−1)),

• Step 1 Maximization w.r.t. τ

τ (t) = arg max
τ∈T

Iθ(t−1)(RY,τ )

= arg max
τ∈T

ERY,τ

[
log ℓc(Y, Z; θ(t−1))

]
+ H (RY,τ (Z))

Note that

τ (t) = arg max
τ∈T

log ℓ(Y; θ(t−1)) − KL[RY,τ , p(·|Y; θ(t−1))]

= arg min
τ∈T

KL[RY,τ , p(·|Y; θ(t−1))]
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Variational EM

Algorithm
• Step 2 Maximization w.r.t. θ

θ(t) = arg max
θ

Iθ(RY,τ (t))

= arg max
θ

ERY,τ(t) [log ℓc(Y, Z; θ)] + H
(
RY,τ (t)(Z)

)
= arg max

θ
ERY,τ(t) [log ℓc(Y, Z; θ)]
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Details of the VE-step for binary SBM i

τ (t) = arg min
τ

KL[RY,τ , p(·|Y; θ(t−1))] = arg max
τ

Iθ(t−1)(RY,τ ) .

(we drop out the index (t−1) on θ)

Iθ(RY,τ ) =
∑

Z
RY,τ (Z) log ℓc(Y, Z; θ) −

∑
Z

RY,τ (Z) log RY,τ (Z) ,

with

log ℓc(Y, Z; θ) =
n∑

i,j=1,i ̸=j

K∑
k,ℓ=1

ZikZjℓ log p(Yij |αkℓ) +
n∑

i=1

K∑
k=1

Zik log πk
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Details of the VE-step for binary SBM ii

Integration of the Z where Z ∼ RY,τ

Iθ(RY,τ ) =
n∑

i,j=1,i ̸=j

K∑
k,ℓ=1

τiqτjℓ log p(Yij |αkℓ) +
n∑

i=1

K∑
k=1

τik log πk

Maximization under the constraint: ∀i = 1 . . . n,
∑K

k=1 τik = 1.

• Derivatives of

Iθ(RY,τ ) +
n∑

i=1
λi

[ K∑
k=1

τik − 1
]

with respect to (λi)i=1...n and (τik)i=1...n,k=1...K where λi are the
Lagrange multipliers,
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Details of the VE-step for binary SBM iii

• Leads to collection of equations: for i = 1 . . . n and k = 1 . . . K ,

K∑
ℓ=1

n∑
j=1,j ̸=i

log p(Yij |αkℓ)τjℓ + log πk − log τik + 1 + λi = 0 ,

• Leads to the following fixed point problem:

τ̂ik = e1+λi αk

n∏
j=1,j ̸=i

K∏
ℓ=1

p(Yij |αkℓ)τ̂jℓ , ∀i = 1 . . . n, ∀k = 1 . . . K ,

which has to be solved under the constraints ∀i = 1 . . . n,∑K
k=1 τik = 1. This optimization problem is solved using a standard

fixed point algorithm.
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Details of the M-step for binary SBM i

θ(t) = arg max
θ

Iθ(t)(RY,τ (t))

under the constraints:
∑k

k=1 πk = 1.

Maximization with respect to π is quite direct:

π̂q = 1
n

n∑
i=1

τ̂ik

For the Bernoulli SBM:

α̂kℓ =
∑n

i,j=1,i ̸=j τ̂ik τ̂jℓYij∑n
i,j=1,i ̸=j τ̂ik τ̂jℓ
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Details of the M-step for binary SBM ii

If the edge probabilities depend on covariates:

logit(pkℓ) = αkℓ + β · xij ,

then the optimization of (αkℓ) and (β) at step M of the VEM is not
explicit anymore and one should resort to optimization algorithms such as
Newton-Raphson algorithm.
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In practice

• Really fast
• Strongly depend on the initial values
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Penalized likelihood criterion

• Selection of the number of clusters K (or K1, K2 in the LBM)
• Integrated Classification Likelihood (ICL) [Biernacki et al., 2000]

ICL(MK) = log ℓc(Y, Ẑ; θ̂K) − pen(MK) (2)

where
Ẑi = arg max

k∈{1,...,K}
τ̂ik . (3)

• Integrated Complete Likelihood (ICL)

ICL(MK) = Ep(·|Y,θ̂K)[log ℓc(Y, Ẑ; θ̂K) − pen(MK) (4)
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Expression of the penalization for SBM

• For directed network

penM = 1
2

{
(K − 1) log(n) + K 2 log

(
n2 − n

)}
• For undirected network

penM = 1
2

(K − 1) log(n)︸ ︷︷ ︸
Clust.

+K (K + 1)
2 log

(
n2 − n

2

)
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Expression of the penalization for bipartite SBM

penM = −1
2

(K1 − 1) log(n1) + (K2 − 1) log(n2)︸ ︷︷ ︸
Bi-Clust.

+ (K1K2) log(n1n2)︸ ︷︷ ︸
Connection


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Advantages of ICL

• its capacity to outline the clustering structure in networks
• Involves a trade-off between goodness of fit and model complexity
• ICL values : goodness of fit AND clustering sharpness.
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Comments on the ICL versus BIC

Conjecture

BIC(M) = log ℓ(Y; θ̂, M) − pen(M)

with the same penalty

• Under this conjecture

ICL(M) = BIC(M) +
∑

Z
p(Z|Y; θ̂K) log p(Z|Y; θ̂K)

= BIC(M) − H(p(·|Y; θ))

• As a consequence, because of the entropy, ICL will encourage
clustering with well-separated groups

•

ÎCL(M) = BIC(M)+
∑

Z
RY(Z, τ̂) log RY,τ̂

(Z)−KL[RY,τ̂
, p(·|Y; θ̂)] .
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Algorithm in practice

• Going trough the models and initiate VEM at the same time
• Bounds on K : {Kmin, . . . , Kmax}

Stepwise procedure
Starting from K

• Split : if K < Kmax

• Maximize the likelihood (lower bound) of MK+1

• K initializations of the VEM are proposed : split each cluster into 2
clusters

• Merge : If K > Kmin

• Maximize the likelihood (lower bound) of model MK−1

• K(K−1)
2 initializations of the VEM are proposed : merging all the

possible pairs of clusters
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Theoretical properties for SBM

• Identifiability and a first consistency result by [Celisse et al., 2012]
• Consistency of the posterior distribution of the latent variables

[Mariadassou and Matias, 2015]
• Consistency and properties of the variational estimators

[Bickel et al., 2013]

71



Other extensions

• Time evolving networks Matias
• Multipartite, Multiplexe networks (R-package sbm, Bar-Hen,

Barbillon, Donnet)
• Multilevel networks (individuals and organizations)

(Chabbert-Liddell)
• Missing data in the network [Tabouy et al., 2019]
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Probabilistic model for networks in a nutshell

SBM/LBM

• generative models,
• flexible,
• comprehensive models which can be linked to a lot of classical

descriptors.

73



Comprehensive R package available on CRAN and Github gathering
several block models and there in references with vignettes.

https://grosssbm.github.io/sbm/

Photo from this site
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