Latent variable models for ecology and evolution

Presentation

Sophie Donnet. INRAC

Master 2 MathSV. November 26, 2024

Classical statistical models are quite limited in practice

- Linear models : $Y_i = x_i^T \beta + \varepsilon_i, \epsilon \sim \mathcal{N}(0, \sigma_2 I)$
- Generalized linear models :

$$\mathbb{E}[Y_i] = \phi(x_i^T \beta)$$

• $Y_i \sim \mathcal{F}_{\theta}(\cdot)$

Objectives

 Purpose of this lecture: present a series of statistical models involving hidden (also called latent) variables used in ecology and evolution:

$$Y|Z \sim p_{ heta^{obs}}(Y|Z)$$
 Observed $Z \sim p_{ heta^{lat}}(Z)$ Hidden

• Estimation of the parameters

EM algorithm and extensions

$$\widehat{ heta} = rg \max_{ heta} \log \ell(Y; heta)$$
 $\log \ell(Y; heta) = \log \int_{Z} p_{ heta^{obs}}(Y|Z) p_{ heta^{lat}}(Z) dZ$

- Likelihood Expectation can be difficult to compute because of the integral form
- Resort to Expectation-Maximisation algorithm
 [Dempster et al., 1977] and extensions (Variational EM, Monte-Carlo EM, etc...)
- Model selection criterion

Examples

- Mixture models and EM
 - Gaussian mixture models: sizes of animals
 - Zero inflated Poisson: abundances for biodiversity
- Hidden Markov models and EM
 - Trajectories of animals (movement ecology)
 - Gaussian models for traits evolution
- Stochastic Block models and VEM
 - Parasitism network , pollination networks
 - Gaussian models for traits evolution
- Poisson log-normal and VEM
 - Dependent couting data: abundances of sereral interdependent species
- Variational auto-encoder and VEM
 - Deep learning

Dates (séance de 3h00)

14:00 - 17:00. Campus Agro Palaiseau, salle Pal-C2.1.33

- **08/01/2025**
- **1**5/01/2025
- **22/01/2025**
- **29/01/2025**
- **1**2/02/2025
- **1**9/02/2025
- **05/03/2025**
- 12/03/2025 (A confirmer)

Evaluation

Examen écrit de 3h le 19/03/2025 (sans documents)

References

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).

Maximum likelihood from incomplete data via the EM algorithm.

Jr. R. Stat. Soc. B, 39:1–38.