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Introduction



= Aim: Modelling linearly organized data (y:):>0
= For example:

= Time series : observations are collected along time
= Spatial data along a covariable gradient

= Genomic applications where measurements are collected at places
(foci) located along the genome.

= Introduce dependence between the (Y:):>0



Movement ecology i

Digital biotelemetry technologies are enabling the collection of bigger and
more accurate data on the movements of free-ranging wildlife in space

and time

Figure 1: Examples of avian, terrestrial, and aquatic animal biotelemetry data sets and their
spatial domains. Left: California condor with a GPS biologger attached to its patagium. Center: A
giant panda telemetered with a GPS collar. Right: A dugong fitted with a tail mounted GPS
biologger. [Tracey et al., 2014]



Movement ecology

= Y, : characteristic of movement at time t.

= Possibly multivariate: speed, depth, angular speed, etc...

= ldea : the value of this characteristic depends on the type of activity
of the animal at time t: travelling, searching for food, sleeping...

= let Z; represent the behavior state at time t:

Yt|Zt =k~ f('ﬁk)

= Time dependeance in Z; : Markov property

P(Zt = Z‘Zt_]_ = Hr—ilgoo .,Z] = ZlaZO = Zo) = P(Zt = let—l = Zt—l)



Understanding narwhal diving behaviour using Hidden Markov Models
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Albatross |

Hidden Markov models identify major movement modes in accelerometer
and magnetometer data from four albatros species
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Other animals [

R-package for HMM inference. Trajectories of elephants, fur seal...
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HMM for Human genetic

= Better understand the genetic structure of populations

= Relies on the genotyping of large sets of individuals sampled in
different places, environments or with different origins

= Genotype Yj; of a series of individuals i € [1, /] at a series of locus
t € [1, T] is measured

= Aim: distinguish sub-populations of individuals.



HMM model for population genetics

For each individual i and locus t, Z; unknown population origins.

= In Chapter 1 : (Z); are independant

= Here, one may assume that the popupulation origins at locus t
depends of the one at locus t — 1.

= Dependency between neighbor loci

(Z) id Z=(Zu,...,Z7),
(Ze)e ~ MC(v,7),
(Yit)ie indep.[(Zic) ~ F(vz.),

with multinomial emission distribution F(~x) = M(1; k).
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Hidden Markov model
Definition of the HMM

Dependency properties

11



Hidden Markov model
Definition of the HMM
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About Markov Chains

Z; is a Markov Chain on the finite state space [1, K]: Z; ~ MC(v, 7)
where

» v={(11,...,vk) with vy = P(Zy, = k) (initial distribution)

= 7 is the K x K transition matrix:

77[(7,@ = P(Zt+1 = €|Zt = k)

A few properties
= Let vy = (Vp1,...,Vik) be the distribution of the hidden state at
time t: vy = P(Z; = k). Then, (Z;) being an homogeneous Markov

chain, we have

vp =Tt !

» If (Z;) is a stationary Markov chain i.e. v = vTr. then

vy = v, Vt.
13



Definition

The general hidden Markov chain model is defined as follows:

(Zt)t (o 1\/10(1/,71'),

(Yi)e indep. |[(Z:), Yil(Ze = k) ~ Fx= F(v), (1)

The Markov chain MC(v, 7) is defined over the state space [1, K], K
being the number of hidden states.

Parameters: 6 = (v, m,7)

14



About the emission distribution

= Must be adapted to the data one wants to modelize

» If Y, € R : multivariate gaussian
Yl’|Zt = k ~ Md(/llk, Zk)

= If Y} is a speed : gamma distribution.

= |f Y; is a speed which can be null : gamma distribution and Dirac
mass.

= |f Y; is an angular speed : adapted distribution!

15



Marginal distribution of Y;

K
Ye ~ ZWk“'?’Yk)'
k=1
Indeed:
K K
= Y p(YilZ. = k)P Zf Yei i) Vek
k=1 =1

If (Z;) is stationnary i.e. vy = vk then: Y; ~ Z,’le Vil (4 vk)-

16



Hidden Markov model

Dependency properties
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Dependencies structure

We do not have the same independancy properties as in the mixture
model.

Useful notations:

» 7l =(Zs,...2Z;) (for s < t)
 YE=(Y.,... Y

s

18



DAG of HMM

Il

Factorisation

)

n n—1
P(Y1,..., Ym Zay- ., Zo) = [[P(Yel Ze) P(Z0) [ P(Ze4112:)
t=1 t=1

19



About directed acyclic graphes (DAG)

See book by Lauritzen or see here for an introduction to DAG.

Factorized distributions |

Let V= (Vi,..., Vi) be a set of dependant random variables with joint
distribution P and let G = (V, E) be a directed acyclic graphe. P is said
to be factorized with respect to G if

N

P(Vi, ..., Vi) = [[B(VilPa(V;, G))

where Pa(V;,G) denotes the parents of node V; in G.

20


https://www.stat.cmu.edu/~larry/=sml/DAGs.pdf

Other example

P(X1, X2, X3, X4, X5) = P(X1| Xz, X3, X5 )P(X2)P(Xs)P(X3| X4 )P(Xs)

21



Moralization of a DAG

Moral graphe |

The moral version of a graphe G is obtained by marrying the parents and

by removing the directions on the edges.




Moralization of a DAG

Independancy properties |
Let /, J and K, 3 subsets of V.
1. In the moral graph deduced from G, if all the paths from / to J pass
through K then
(Xi)ier 1L (X)jesl(Xk)kek-

2. In a DAG, conditionnally to its parents, a variable is independant
from its non-descendant.

Consequence of 1.

P(Xi|Xy, Xk) = P;)E,),(j;(}){(;) = P(Xlgi};gjlr)gglx}() = P(Xi| Xx)

23



1. 1=1{5,2,1},J = {4},K = {3}
P(Xs, X2, X1, Xa| X3) = P(Xs, X2, X1| X3) P(X4|X3)

2. P(X1|X2, X3, Xa, X5) = P(X1| X2, X3, Xs)

24



Application for HMM

Z (2 ——Ze) Z,

t+1

L. p(Zea| YT, Zf) = p(Ze411Z:)
2 p(Zei|Z}) = plZe1a|2)

I= {Yt+1}7 K= {Zf+1}7J = {th_lv ) Ylt}

3. p(Yera|YS, ZIM) = p(Yesa|Zeta)

25



Application for HMM

Consequences

(a) all paths from Y{ to Z.41 go through Zf = Z,,1 is independent
from Y{ conditionally on Zf

P(Ze1| Y1, Z:) = p(Ze41|Z:)

(b) all paths from Zf~! to Z, ;1 go through Z;, meaning that Z; 4 is

independent from Z{~! conditionally on Z; (i.e. (Z;) is a Markov
chain);

c) all paths from Y{ to Y go through Z,,; meaning that Y*! is
1 +
independent from Y{ to conditionally on Z; 1

P(Yesa|Yis Zes) = p(Yera]Zesa)

26



Proposition
(Z:) conditional on the observed data Y = Y{" is still a Markov chain.
And

P(Ze+1|Z1, YY) = p(Ze41]Ze, Yin)

27



Proof (i)

Use DAG properties (Exercice) or :
p(Ze1, 21, YT, Y1)
p(ZL, Y1, Vi)

t+ly{ Zt+17 YlaZtJrle )
p( mlzfayt) (41, Y1)

P(Yii1lZent)P(YL | Zer, Z1)P(Zen| 2])p(2ZT)
p(YialZi, YV)p(Yi1Z2D)p(21)

p(Zea|ZE, YT = p(Zesa|Zi, YL, Vi) =

28



Proof (ii)

But p(Y{[Ze41, Z1) = (Y1 |Z1) So

P(Y{ 11 Ze11)p (Y Zer T ZE) (2241 | Z2)
p(Zed|ZE YD) = 1
(Zenldt, Y1) (Vi1 122 YRR Z

29



e

K

p(YialZi, YY) = Zp(ytnﬂwa Zeyr = k)p(Ze1 = k|Zf7%{)

k=1
= p(YialZe)

)

Moreover

%)

30



Proof (iv)

Finally:

t \/n PW&lﬁtH)WP(ZtHIZt)
Plzalzi 1) P(Y2alZE, VOR(VEZT
P(Y{i1|Zev1)p(Ze41|Z:)

P(Y{alZe)
P(Ze+1|Ze, Vi)

31



Parameters estimation

32



Complete log-likelihood

Notations: Y = Y7,

log pa (Y. Z)

z=2r

log [pe(Z)pe(Y|Z)]

log po(Z1)pa(Y1|Z1) + ) [log po(Ze| Ze 1) + log po( Vel Zt)]
t=2

Zzlk |0ng+Z Z Zi_1kZs 0 log mie

t=2 k,4=1
n,K

+ Z Ztk|0gf(yt?’Yk)-
t=1,k=1

33



Marginal (or 'observed’) log-likelihood

log pp(Y) = log [Zpe(z)pe(YZ)
z

(e ) )]

t>2 kt

34



EM algorithm : reminder

0 = arg max log po(Y).

Algorithm (EM)
Repeat until convergence:
» Expectation step: given the current estimate 0" of 6, compute
por(Z|Y), or at least all the quantities needed to compute

Egn [log po(Y, Z)|Y];
= Maximization step: update the estimate of 6 as

3h+1 = arg moax ]Egh [Iog Po (Ya Z)|Y]'

35



E-step: compute Eyn|[logpy(Y, Z)|Y]

Using Slide 33
K n K
Ellog ps(Y,Z)|Y] =E | Y Zi log v + Zi 1.kZs 0 log mhe|Y
k=1 t=2 k(=1
n,K
+E | Y Zulog f(Yeiw)|Y
t=1,k=1
K n K n,K
= > 7uloguk+ Y Y nelogmie+ Y e log F(Yei k)
k=1 =2 k(=1 t=1,k=1
where

Ttk = E[Ztk|Y] = P(Zt = k|Y)

Ntke = E[Zt—l,kzt,Z|Y] = P(Zt—l =k, Z = €|Y)-

36



As opposed to the mixture model:

T = P(Ze = k|Y) # P(Z: = k| Y})

More generally, p(Z|Y) does not factorize over t any more.

37



Foward- backward formulae

Proposition |

The conditional probabilities Ty and nwe can be computed via the two
following recursions.

» Forward (fort =1,..., n): Denoting Fy = Pyo(Z; = k|Y{) compute
Fie o< vefe(Y1)

K
Feo o< fo(Ye) Y Feoa ke
k=1

such that, for all t : Zle Fep = 1.
» Backward (fort =n,..., 1)

Tk = P(Z,=k|Y) = Po(Z, = k|Y]) = Fux
K
T, Y
Ger1e = E ke Fek,s Neke = Tke Gt:uf:tk, Ttk = E Neke-

38



Proof of the Forward formula i

Fort=1

1
~
|

P(Z1 ={M1)
p(YilZ1 = O)P(Z1 = £) /p(Y1)
vefe(Y1) (F1)

<

by the Bayes Formula.

39



Proof of the Forward formula ii

Fort > 2
K
Fio = P(Ze=0Y{) =Y P(Ziy=kZ =1Y])
k=1
K t
pa V)
Ak Fi_1k Tk, 1Lk and =f(Yy)
K t— 1 t—1
_ ZP Y Zt—1:k|Y1 )P(Zt:ﬂzt_lzk) p(Yt\thf)
— p(YY)
(using condltlonal independences, from the past to present t)
Yt 1
= ( fo(Yr) ZﬂkeFt 1,k
K
Fio = P(Ze=0Y]) < (Y)Y mueFerse (F2)
k=1

40



About the normalizing constant i

Note that

So

=1
Yt—l K
PUT) 3 k=1
K
p( YY)

a1



About the normalizing constant ii

p(Y?) _ P(Y1t717 Yt)
P(Ylt_l) P(Y1t_1)

= p(Yel Yltil)

Useful formula

p(Y: | Yih) Z (Y:) Z'/Tlet 1,k (2)
/=1

» Use of the formula to compute the marginal likelihood

42



Proof of the Backward formula i

The initialization is given by the last step of the forward recursion:
Tk = P(Z, = k|Y) = P(Z, = k|Y{") = Fk

and the recursion follows as: for t < n—1

K

K
Ttk = P(Zt = k|Y1n) - Z 'D(Zt =k, Zt11 = €|Y1n) - Zﬁtkl (83)
(=1 =1

Ntke
()
P(Zy =k, Zey1 =20, YY)
p( Y1n)

Ntke

43



Proof of the Backward formula ii

with
(o) = P(Zi=k,Ziy1=0,Y])=P(Zi =k, Zts1 =10, Y], Yii)
Tke
= p(Ythrl‘Zerl:éa/zt;*/klv)yly)p(zﬂrlzazt':kv%)
P(Z: = k|Y{) p(YY)
—_——
=Fu
And so:
(o)
(°) p(Y)P(Yi1|Zera = £)
Nike = ~ =T = F, ~ B2
the p(Y7) 1% p(YD) tk ( )

a4



Proof of the Backward formula iii

and
(.) _ P(Ylt)P( Ytrzi-l‘ZtJrl = f)
p(Y{")
_ p(YD)P(Y{1|Zti1 = 1) p(Y{|Zi1 =10)
p(Y?) p(Y{|Zey1 =20)

P(Ylt)P(Yf‘Ztu — /)
p(YT)p(Y{|Zey1 =)

Because p(Y{|Zes1 =€) = p(YP 1|V, Zes1 = O)p(Yi| Zesr = 0)

_ P(Zen =4Y7)
(.) = D(7. . — Jyvt)
P(Zer1 = £]YY)
(inverting the conditioning: P(A|B)/P(A) = P(B|A)/P(B))
Tt4+1,0
P(Zt+1 = €|Y1t)

45



Proof of the Backward formula iv

Now

TtJr].,[ Ftk (% 82)

=B = VD)

P(Zt+1 = £|Y1t)

M =

P(Ziy1 =4,Z: = k| YY)

-
Il
N

P(Zes1 = 4Z: = k, YE)P(Z: = K| YY)

M= 1=

TeFexe =2 Geg1e (B1)

-
Il
—
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Remarks on the EM Forward Backward

1. The formula is a double recursion

2. Computational complexity : O(nK?) .

47



Assume that 74 and 74 have been calculated by the FB algorithm. Now

we have to find
argmax Eym [log pa(Y, 2)|Y]

(v,m,y)
where
Egw[log pa(Y,Z)|Y] = Zﬁk |0ng+Z Z Neke l0g Thep
t=2 k f=1
nK
+ > Tulog F(Yeiw)
t=1 k=1

and

K K

due=1 and > mu=1, Vk=1,...,K

k=1 =1

48



Lagrange multipliers:

Zﬁk |0ng+Z Z Neke 108 Ty + Z Te log £(Ye; Vi)

t=2 k(=1 t=1,k=1
K K K
k=1 k=1 /=1
implies
Nk = 0, Vk=1,....K
Vk
L2\ 0 k=1, K

49



So:
~ T1k
= Vk=1,...,K
Vi )\0 9 ) )
R = Limkf, Vi e=1,...,K

Using the constraints we get:

K K K
" DV =1=2 e R But Y k=150 A =1

50



= Forall k=1,..., K,

K n K
N Zt 277tki 1
:§ Tke = = E E Neke
—1 =1 Ak e e
—

=Ttk

And so A\ = Y7, Tk,

W_Z”"f“, Vkl=1,....K
Zt 2 Ttk

51



If F belongs to the exponential family

log fi(Yei k) = vEte(Ye) — a(Ye) — bi(k)

So:
9 n,K
— Y rulogf(Yeiw) = 0
ol t=1 k=1

Il
o

ai’yk ZTtk [fy;(rtk(yt) — ar(Ye) — bi(vk)]

3 k[t Ye) = B(w)] = 0

o Taete( Y
by = St
t:]_Ttk

52



EM fo HMM : Baum-Welch algorithm

53



t+1

Prediction of 7, ; given Y™ Z, =k

About P(Z 1 = 0| YT, Z, = k)

rrr

P(Ziy1 = £ Y, Z, = K)

P(Zt+1 = £|Yt+l7Zt = k)

o P(Yer1|Zerr = £, Ze=K)P(Zes1 = U Z; = k)
x fo( Yer1)me
_ Tke

Yors i fi(Yera)

Conditional on Y"‘+1 the transitions 7, are biased according to the
likelihood of the data under the arrival state f;(Y;11). 54



Choosing the number of hidden states K
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where

= n: indicates the length/size of the observation time-series

= dk: number of free parameters:

K
dx = K2— K+ dim(y) + (K — 1)

- k=1 v

56



Computation of the marginal likelihood

log pg(Y) = log pe( Y1) + Z log po(Ye| Y{™1).

£>2

Equation (2) which gives explicit formula of p(Y:|Y{™?)

p(Yel Vi :Z (Ye) ZWuFt 1,k

By product of the EM algorithm: can be computed by storing the
adequate quantities in the forward step

57



From BIC to Integrated Complete Likelihood (ICL)

= BIC focus on the fit to the data.

= In classification problems, interesting to have a classification that
separates well the observations.

= Entropy H[pé\K(Z|Y)] is small when the observations are classified
with reasonable confidence.

= [Biernacki et al., 2000]: account for the classification uncertainty in

the selection of K

= Penalize value of K with large entropy

Definition (ICL)

2 d
Ricw = argmgx (logpg, (V) ~ Hlpg, (ZIV)] - 5 1ogn)

58



Computing ICL

Using Proposition from chap 2

log p; (Y) = E;_ [IongAK(Y, Z)|Y} ~E;. [IongAK(Z|Y)|Y]

Hlpg. (ZV)

d
RKice = argmp (Iogpg, (¥) ~ Mlpg, (ZIV)] - 5 1ogn)

dx
arg max <1E§K [Iog P, (Y, Z)|Y] — 5 log n)

B, IogpeAK(Y, Z)|Y] : Forward Backward algorithm

59



About the conditional entropy i

H[p(Z]Y)] = —E[log p(Z|Y)|Y]

Here

H[p(Z|Y)] = —E |log p(Z1|Y) + Y _ log p(Ze|Ze—1, Y)|Y

Ellogp(Z]Y)] = > P(Zy = k|Y)log P(Z = k|Y)

X
= E T1k log Tk
X

60



About the conditional entropy ii

» Using p(Z:|Z:-1,Y) = p(Z:, Z:—1|Y)/p(Z:-1]Y),

Eflog p(Z:|Z:-1Y)|Y] =
K

=" P(Zioys =k Ze =UY)log P(Z, = l|Z—1 = K, Y)
k=1

= Z Neke (108 Newe — 10g Te—1 ).
k=1

= Finally,

H[p(Z Zle log 71k —ZZntke log Meke — 10g Te—1,4)-

t=2 k,t

By product of the backward step of the E-step

61



Classification
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MAP using the marginal

A classification at each position t can be defined based on the MAP rule
applied to the marginal distribution of each label given the data:

Z, = argmax P(Z, = k|Y) = arg max P(Z; = k|Y{) = arg max 7.
k=1,...,K k=1,...,K k=1,....K

Really easy.

63



Joint MAP

= Because of the conditional dependencies:

argmax P(Z =2z|Y{) # | argmax P(Z; = k|Y{")
ze{1,...,K}" ke{l,...,K} il
= Most probable hidden path given the observations:
Z = argmax P(Z = z|Y).

= Finding a MAP in {1,..., K}" much more difficult.

64



Joint MAP: Viterbi algorithm

Proposition |
The most probable hidden path given the data is given by the following
forward-backward recursion:

Forward: Vi, = v fi (Y1) and for t > 2:

Vie = max Vee1xmiefe(Ye),

Si—1(8) = argmfx Vi1 kmrefo(Ye).

Backward: Z, = argmaxy Vyx and for t < n:

2t = St(ft-‘rl)-

65



Demonstration of Viterbi i

First note that

P(Z
arg max P(Z = z|Y) = arg max =argmaxp(Z =z,Y)

Forward recursion: Succession of optimal choices as for the hidden label
at the preceding times, so that

Ve = max p(ZITt =27tz = 4, YY)

2

and, finally,
max Vok = max p(Z =z,Y).

66



Demonstration of Viterbi ii

t—1 _ _t—1 _ t
max p(Zy " =2z S z=1(Y))

4

t—2 _ _t-2 _ _ t—1
max max p(Zy "=z "\ Zr 1=k, Zr =0,Y] ", Ye)

2

1

max max p(Ye|ZE2 =27, Zea=K, Ze = £, Y1)
1

P(Ze=0Z2=27 21 = b, YE)

p(Zi2 =222 1=k Y

max max p(ZF2 =222 1 =k, YY)
s
z
1

=Vi—1k
p(Yi|Ze = O)p(Z: = €| Ze—1 = K)

max Vo1 kmrefo(Ye)

67



Demonstration of Viterbi

Backward

N

recursion

arg max Vi, = argmaxmax p(Zy* = z|
n—1

k k

arg max max p(Zl"_1 =

k zf71

arg max max p(Zl"_1 =
n—1

k =

&

n
z

n
z

_1-,Zn = kaY)

—1 z, = k|Y)

n—1

s Zn = k, Yln)

68



Demonstration of Viterbi iv

= Forn—1: Z,,l = 5,,,1(2,,). So:

anl = Snfl(gn)

= argmax V,,_17k7rk3f3(Y,,)
h A

= argmaxmax p(Zy 2 =22 27, 1=k, Y1n_1)7rk§ t5 (Yn)
k 2{772 n n

= argmaxmax p(ZI"_2 = zf_Q, Z, 1=k, Z, = 27, Y7
k Z

= argmaxmax p(Zl”*2 = zl”’z, Zn1=k Z,= Z,|Y)

n
k Z]

69



Demonstration of Viterbi v

= For n—2: Z,_g = S,,_z(zn_l). So:

2n—2 - 5n—2(2n—1)
= argmax V, o4m,5 f5 (Y1)

K kZn—1 Zn—1
= argmaxmax p(Z 2 =213 2Z, 2=k, Y )r 5 (Yao1)
K ) an 1 Zn-1
1
= argmax max /:)(Zl"f3 = 21"73, Zpo=k,Zn1=24_1, Yl”*l)
k 21"73
= arg max max p(Zl"_3 = zl"_3, Zn o=k, Zy 1=2,1, Yl"_l)
k 2573
fz(Yn)”z_lz

= argmaxmax p(Z{~ 3 - = 3 Zn o=k, Zn1=20 1,2, = Zp, V&)

k 2~

= argmaxmax p(Zl"’3 = zf’3, Zypo=k, Zn_1= 21—17 = Z,|Y)

k Z]

70



Demonstration of Viterbi vi

The backward recursion traces back the succession of the optimal choices
and retrieves the optimal path.
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A few more details to understand i

The rational (for n = 4) behind this algorithm is that, for a function of
the form

F(z}) = fi(z1) + fa(z1, 22) + f(22, 23) + fa(z3, 22),
For us it would be
f(Z1) = log (v £, (Y1),

ft(zt—hzt)) = |Og (ﬂ-zr—l-,zrfzr(yt))

and
F(z{) = log p(z, Y1)

72



A few more details to understand ii

We have the decomposition

max F(z{) = max |max (max {mz?x [A(z21) + fa(z1, 22)] + (22, 23)} + fa(zs, z;;))}

z] 24 z3 22

= max | max (max {F12(22) + f3(22,23)} + ﬁ;(23,24)>:|
23 z2

where  F{(z) = max fi(z1) + f(z1, 22)
z1

= max | max (F13(23) + fa(zs, 24)):|
z3

z4

where  F(z3) = max F£(z) + fi(z2, z3)
2

= mZAax [Ff(24)]

where  Fi(z4) = max F;(z3) + fa(z3, 1)
z3
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A few more details to understand iii

so both the maximal value of F and the optimal solution 2 are obtained
by storing the F{(z;) and the
Ze—1(z¢) = argmax,,_, Fffl(zt,l) + f(zt-1, zt).
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Remark on Viterbi computational details

= Viterbi path sometimes raises numerical issues due the addition of a
large number of small terms.

= Therefore high recommended to make all calculation in a log scale,
that is

log Viy = R (log Vi1, + log mke + log f,(Y1)) ,
Se-1(f) = arg 5 (log Vi_1,k + log mie + log fo(Y1)) .
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Connexion with the Kalman filter
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Kalman Filter

= Kalman filter is widely used in signal processing to retrieve an
original signal (Z;) from a noisy signal (Y;).
= Model is the following

Yi=Zi8+ Fe, Zy = Zi a7+ Ey, Z ~N(0,1)

= with
= E = (E:) and F = (F;) are independent Gaussian white noises with
respective variances V(E;) = 1 — 7? (without loss of generality) and
= V(F) = 2.
= Note that the process Z is stationary with zero mean and unit
variance.
= The parameters of this model are 7 and v = (3, 0°).
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The complete log-likelihood is then

log po(Y,Z) = logpy(Z)+logpe(Y|Z)
= logps(Z1) + Y logpo(Ze|Ze—1) + > _ log pa( Vel Z:)
t>2 t

which only involves linear and quadratic functions of the Gaussian rv's Z;
and Y;.

= E step: compute conditional mean and variance of the Z;'s, which
can be derived using standard results on Gaussian vectors.

= M step results in (weighted) linear regression estimates (see
[Ghahramani and Hinton, 1996])
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Conclusion

= From Mixture models to HMM : more dependence in the latent
variable

= More complexe but still explicit.
= R packages HiddenMarkov

= Next chapter : more complexe dependencies SBM
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