
Latent variable models in biology and ecology
Chapter 5: A gentle introduction to Variational Neural
Networks

Sophie Donnet.
Master 2 MathSV. February 27, 2024

1

Context

• In statistical learning, two main tasks:
• Regression or classification
• Reduction of dimension

Neural networks are used to construct the regression function,
classifier or encoder-decoder (autoencoder).

• Variational versions are used when we do not want to optimize a
parameter but a probability distribution

• if one wants to structure the latent space
• if one wants to perform Bayesien inference

• Relies on
• Neural networks : we know already
• Variational EM algorithm: we know already, but anyway it is not

complicated

2

Overview

Basics on regression, classification, reduction of dimension

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

3

Basics on regression, classification, reduction of dimension

Neural networks

Variational versions of neural networks

4

Regression or classification

• Let (X,Y) be our dataset:
• (X, Y) = (Xi , Yi)i∈1,...,Nobs

• ∀i = 1, . . . , Nobs , Variables Xi ∈ Rn.
• Yi ∈ Y the variable to explain : classification or regression

• Looking for a function f classifier or regression
• f : Rn 7→ Y and
• such that

Y ≈ f (X) ⇔ Loss(Y − f (X)) small

• If regression Loss(Y − f (X)) = ||Y − f (X))||2

• If classification : Loss = cross-entropy

5

Regression or classification

6

Reduction of dimension

Autoencoders are used for the reduction of dimension of (large)
datasets.

Let X be our dataset: X = (Xi)i∈1,...,Nobs

• ∀i = 1, . . . ,Nobs , Xi ∈ Rn.
• Looking for two functions

• Encoder e : Rn 7→ Rm and
• Decoder d : Rm 7→ Rn

• such that

X ≈ d(e(X)) ⇔ ||X − d(e(X))||2 small

• Z = e(X) : latent variable

7

Autoencoder

8

Basics on regression, classification, reduction of dimension

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

9

Basics on regression, classification, reduction of dimension

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

10

About f : neural networks

11

About d and e : neural networks

12

About neural networks

One neuron : fj(X) = ϕ(< wj , x > + bj) where

• ϕ the activation function : non linear
• wj = (w1

j , . . . ,wn
j) are the weights of the input variables (x1, . . . , xn)

• bj is the bias of neuron j .

At each layer ℓ of the neural network:

• Receive nℓ−1 input variables yℓ−1 = (y ℓ−1
1 , . . . , y ℓ−1

nℓ−1
)

• Create nℓ new variables. For variable j of layer l :

y ℓ
j = ϕ(< w ℓ

j , yℓ−1 > +bℓ
j)

Unknown parameters θ

• w ℓ
j ∈ Rnℓ−1, for ℓ = 1, . . . L, for j = 1, . . . , nℓ,

• bℓ
j ∈ R, for ℓ = 1, . . . L, for j = 1, . . . , nℓ,

13

Model choice

To choose:

• The number of layers L
• The number of neurons in each layer: nℓ :
• possibly nℓ > n
• For autoencoder the middle layer m < n
• The activation function ϕ (possibly one for the hidden layers ϕ and

one ψ for the activation layer)

14

Learning f , d and e

• Regression or classification

θ = (w ℓ
j , bℓ

j)j=1...,nℓ,ℓ=1,...,L are calibrated on a dataset (Xi ,Yi)i=1,...,Nobs

by minimizing the loss function

θ̂ = argminθ∈Θ

Nobs∑
i=1

Loss(Yi − fθ(Xi))

• Autoencoder

θ = (w ℓ
j , bℓ

j)j=1...,nℓ,ℓ=1,...,L are calibrated on a dataset (Xi)i=1,...,Nobs by
minimizing the loss function

θ̂ = argminθ∈Θ

Nobs∑
i=1

||Xi − dθ ◦ eθ(Xi)||2

Optimisation by Stochastic gradient descent: see later for a reminder
of the principle 15

Basics on regression, classification, reduction of dimension

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

16

PCA versus autoencoder

• Let P ∈ Mn,m(R),
• Hyp.:

P ′P = In

• Let P ′Xi is the projector of vector Xi on the sub-vectorial space
generated by the columns of P.

• We are looking for P minimizing the inertia of the projected dataset:

P̂ = argmax{P∈Mn,m(R),P′P=In}

Nobs∑
i=1

||P ′Xi ||2

= argmin{P∈Mn,m(R),P′P=In}

Nobs∑
i=1

||Xi − PP ′Xi ||2

17

PCA versus autoencoder

• W ′ = e : linear encoder function
• W = d : linear decoder function
• Note that if you use neural networks with linear activation function

and one layer, you will get W not necessarily orthogonal.

Link to a rigourous and clear demonstration

18

http://www.xavierdupre.fr/app/mlstatpy/helpsphinx/c_ml/rn/rn_9_auto.html

Basics on regression, classification, reduction of dimension

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

19

Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

• Choose an initial value of parameters θ and a learning rate ρ
• Repeat until a minimum is reached:

• Split randomy the training set into NB batches of size b (n = b × NB)
• for each batch B set:

θ := θ − ρ
1
b
∑
i∈B

∇θ {Loss(f (Xi , θ), Yi)}

Remarks:

• Each iteration is called an epoch.
• The number of epochs and batches are parameters to tune
• Difficulty comes from the computation of the gradient

20

Calculus of the gradient for the regression

• Y ∈ R.
• Ri = Loss(f (Xi , θ),Yi) = (Yi − f (Xi , θ))2

• For any activation function ϕ (hidden layers) and ψ

21

Partial derivatives of Ri with respect to the weights of the last
layer

• Derivatives of Ri = (Yi − f (Xi , θ))2 =
(
Yi − h(L+1)(Xi)

)2 with
respect to (w (L+1)

j)j=1...JL

• a(L+1)(X) = b(L+1) + w (L+1)h(L)(X) ∈ RJ

•

f (X, θ) = h(L+1)(X)
= ψ(a(L+1)(X))

= ψ

(
b(L+1) +

JL∑
j=1

w (L+1)
j h(L)

j (X)
)

•
∂Ri

∂w (L+1)
j

= −2 (Yi − f (Xi , θ))ψ′
(

a(L+1)(Xi)
)

h(L)
j (Xi)

22

Partial derivatives of Ri with respect to the weights of the layer
L − 1

• Derivatives of Ri =
(
Yi − h(L+1)(Xi)

)2 with respect to
(w (L)

jm)j=1...JL,m=1...JL−1

•

∂Ri

∂w (L)
jm

= −2 (Yi − f (Xi , θ))ψ′
(

a(L+1)(Xi)
) ∂

∂w (L)
jm

a(L+1)(Xi)

23

Partial derivatives of Ri with respect to the weights of the layer
L − 2

a(L+1)(X) = b(L+1) +
JL∑

j=1
w (L+1)

j h(L)
j (X)

= b(L+1) +
JL∑

j=1
w (L+1)

j ϕ

b(L)
j +

JL−1∑
m=1

w (L)
jm h(L−1)

m (X)

∂

∂w (L)
jm

a(L+1)(Xi) = w (L+1)
j ϕ′

b(L)
j +

JL−1∑
m=1

w (L)
jm h(L−1)

m (Xi)

×h(L−1)

m (Xi)
= w (L+1)

j ϕ′(aL
j (Xi))h(L−1)

m (Xi)

24

Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

• Given the current parameters
• Forward step : From layer 1 to layer L + 1, compute the

aℓ
j (Xi), ϕ(aℓ

j (Xi))
• Backward step : From layer L + 1 to layer 1, compute the partial

derivatives (recurrence formula update)

25

Tuning the algorithm

• ρ: learning rate of the gradient descent
• if ρ too small, really slow convergence with possibly reaching of a

local minimum
• if ρ too large, maybe oscilliation around an optimum without

stabilisation
• Adaptive choice of ρ (decreasing ρ)

• Batch calculation reduces the number of quantities to be stored in
the forward / backward

26

Obviously

Many improved versions of the maximisation algorithm (momentum
correction, Nesterov accelerated gradient, etc. . .)

27

Automatic differentiation

Success of the neural network comes from automatic differentiation,
i.e. automatisation of the previously described forward-backward
procedure to compute the derivatives : Tensorflow

28

Basics on regression, classification, reduction of dimension

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

29

Basics on regression, classification, reduction of dimension

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

30

Why variational neural networks?

Regression-Classification : Bayesian inference of the parameters θ

• Prior on θ: π(θ)
• Estimation not of θ but of the posterior distribution of θ : p(θ|Y)

Autoencoder: give a structure on the latent space Z

• Distribution on Z : π(Z)
• Point estimation of θ and estimation of the posterior

distribution of Z : p(Z |θ,X)

Variational : approximation of the distributions

• p(θ|Y) ≈ qY(θ)
• p(Z |θ,X) ≈ qX(Z)

31

Using the autoencoder to simulate

• The optimization of the autoencoder supplies
(Z1, . . . ,ZNobs) = (e(x1), . . . , e(XNobs))

• How can we simulate the z ′s such that d(z) looks like my original
data?

• How to construct a “machine” able to generate coherent other Zi .
• Need to constrain/ structure the latent space.

32

Using the autoencoder to generate images

33

Probabilistic version of the autoencoder

• Idea : put a probabilistic distribution on the latent space and
estimate the posterior distribution.

• A statistical model with latent variables

Xi = d(Zi) + ϵi

Zi ∼i.i.d. Nm(0, Im)

ϵi ∼i.i.d. Nn(0, cIn)

• Likelihood
ℓ(X; d) =

∫
Z

p(X|Z; d)p(Z)dZ

Not explicit

• EM requires the posterior distribution of Z

p(Z|X; d) ∝ p(X|Z; d)p(Z)

Very complex too

34

Basics on regression, classification, reduction of dimension

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

35

The problem

Xi = dθ(Zi) + ϵi

Zi ∼ i.i.d.Nm(0, Im)
ϵi ∼ i.i.d.Nn(0, σ2In)

Likelihood
ℓ(X; dθ) =

∫
Z
ℓ(X|Z; dθ)p(Z)dZ

No explicit form, linked ot the fact that p(Z|X; dθ) is complex

36

The Evidence Lower BOund (ELBO)

• Let’s simplify that distribution p(Z|X; dθ)

p(Z|X; dθ) = qX(Z; g ,H)
Nobs∏
i=1

p(Zi |Xi ; dθ) ≈
Nobs∏
i=1

qXi (Zi ; g ,H)

qXi (Zi ; g , h) = Nm(g(Xi),H(g(Xi))

where g and H are chosen such that DKL(q(Z; X, g ,H), p(Z|X; dθ))
is small

• Replace the likelihood by the ELBO

ELBO(dθ, g ,H) = ℓ(X; dθ) − DKL(q(Z; X, g ,H), p(Z|X; d))
= EqX(Z;g,H)[log p(X|Z; dθ)] − DKL(qX(Z; g ,H), p(Z))

37

Optimization: minimize −ELBO(d , g , H)

−ELBO(d , g ,H) = −EqX(Z;g,H)[log p(X|Z; dθ)] + DKL(qX(Z; g , h), p(Z))

• Reconstruction term

−EqX(Z;g,H)[log p(X|Z; dθ)] = EqX(Z;g,H)

[Nobs∑
i=1

||Xi − dθ(Zi)||2
2σ2

]

• Regularisation term : DKL

• σ2 : variance parameter which balances regularisation and
reconstruction

38

About dθ, g and H

dθ neural network function as before

About g and H : called the "encoder part"

• H(X) is a covariance so
• it should be a square symmetric matrix
• Simplification: diagonal matrix H(X) = diag(h2(X)) where

h(X) ∈ Rm

• h(X) = h2(h1(X)), g(X) = g2(g1(X)), g1 = h1

• g2,g2, h1 neural networks

39

About the expectation

• EqX(Z;g,h)

[∑Nobs
i=1

||Xi −dθ(Zi)||2

2σ2

]
can not be evaluated.

• Monte Carlo approximation on 1 realization
• Reparametrisation trick

Z sim
i = g(Xi) + diag(h(Xi))ζi , with ξi ∼ Nm(0, Im)

EqX(Z;g,h)

[Nobs∑
i=1

||Xi − dθ(Zi)||2
2σ2

]
≈

Nobs∑
i=1

||Xi − dθ(Z (sim)
i)||2

2σ2

Nobs∑
i=1

||Xi − dθ(g(Xi) + diag(h(Xi))ζi)||2
2σ2

40

Finally...

41

Basics on regression, classification, reduction of dimension

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

42

Principal of variational Bayesian inference

• Approximate the posterior p(θ|Y) by q(θ) where q ∈ R
• R family of simpler distributions. Example: q(·) = N (µ,Σ)
• Approximating = Minimizing

DKL(q(θ), p(θ|Y)) = Eq

[
log q(θ)

p(θ|Y)

]

43

The Magik trick

DKL(q(θ), p(θ|Y)) = log ℓ(Y) +

− Eq[log ℓ(Y|θ)π(θ)] + Eq[log q(θ)]︸ ︷︷ ︸
F(q)

• log ℓ(Y) independent of q
• Minimizing the Kullback–Leibler divergence w.r. to q is equivalent

to minimizing F(q) with respect to q

F(q) = −Eq[log ℓ(Y|θ)π(θ)] + Eq[log q(θ)] (1)

= −Eq[log ℓ(Y|θ)] + Eq

[
log q(θ)

π(θ)

]
(2)

= DKL(q, π) − Eq[log ℓ(Y|θ)] (3)

44

Parametrization of q

Choose a parametric form in q = qη.

• For example: q = N (µ,Σ)

η̂ = arg min
η

F(η) = arg min
η

DKL(qη, π) − Eqη [log ℓ(Y|θ)]

• Optimisation by gradient descent
• BUT expectation not explicit

45

Monte Carlo approximation

• With neural networks, Eqη
[log ℓ(Y|θ)] not explicit (activation

functions non linear)
• Approximation by Monte Carlo : assume that θ(m) ∼ qη,

m = 1, . . . ,M

F̂(η) = 1
M

M∑
m=1

log qη(θ(m))
π(θ(m))

− log ℓ(Y|θ(m))

• Problem: we lost the explicit dependence in η through the
simulations θ(m)

• Solution : reparametrisation

ξ(m) ∼ N (0, I) and θ(m) = ϕ(ξ(m), η)

F̂(η) = 1
M

M∑
m=1

log qη(ϕ(ξ(m), η))−log π(ϕ(ξ(m), η))−log ℓ(Y|ϕ(ξ(m), η))

46

Remarks

F̂(η) = 1
M

M∑
m=1

log qη(ϕ(ξ(m), η)) − log π(ϕ(ξ(m), η)) − log ℓ(Y|ϕ(ξ(m), η))

• People take M = 1
• DKL(qη, π) may be explicit (for Gaussian distributions for instance)

but not used in practice
• ξ(m) are resimulated each time we compute the gradients

47

More details for the regression case

• θ are the parameters (weights and bias)
• Prior gaussian distribution on θ : θ ∼ N (0, I)
• If regression Yi = fθ(Xi) + ϵi , ϵ ∼ N (0, σ2)

−ℓ(Y, ϕ(ξ(m), η)) =
[Nobs∑

i=1

||Yi − fϕ(ξ(m),η)(Xi)||2

2σ2

]

48

Conclusion

• Easy to understand all the tools
• Now, how easy is it to encode this?

49

	Basics on regression, classification, reduction of dimension
	Neural networks
	Definition of neural networks
	PCA versus autoencoder
	A few reminder on the optimization procedure

	Variational versions of neural networks
	Motivations
	Variational (probabilistic) autoencoder
	Variational bayesian inference

