Latent variable models in biology and ecology

Chapter 5: A gentle introduction to Variational Neural
Networks

Sophie Donnet. INRAZ
Master 2 MathSV. February 27, 2024

Context

= |n statistical learning, two main tasks:
= Regression or classification
= Reduction of dimension
Neural networks are used to construct the regression function,
classifier or encoder-decoder (autoencoder).
= Variational versions are used when we do not want to optimize a
parameter but a probability distribution
= if one wants to structure the latent space
= if one wants to perform Bayesien inference
= Relies on

= Neural networks : we know already
= Variational EM algorithm: we know already, but anyway it is not
complicated

Overview

Basics on regression, classification, reduction of dimension

Neural networks
Definition of neural networks
PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks
Motivations
Variational (probabilistic) autoencoder

Variational bayesian inference

Basics on regression, classification, reduction of dimension

Regression or classification

= Let (X,Y) be our dataset:

= (X,Y) = (Xi, Yi)ieL,.... Noss

= Vi=1,..., Nys, Variables X; € R".

= Y; € Y the variable to explain : classification or regression
= Looking for a function f classifier or regression

= f:R"+—)Y and

= such that

Y =~ f(X) < Loss(Y — (X)) small
= If regression Loss(Y — f(X)) = ||Y — f(X))|?
= |f classification : Loss = cross-entropy

Regression or classification

dim:n

Reduction of dimension

Autoencoders are used for the reduction of dimension of (large)
datasets.

s Vi=1,..., Nops, Xi € R".
= Looking for two functions

= Encoder e : R" — R" and
= Decoder d : R™ — R"

= such that
X = d(e(X)) < ||X — d(e(X))|[* small

= Z = e(X) : latent variable

dim:n

encoder : e

/

z =e(x)
dim:m

d(e(x) ~=x

decoder : d

dim:n

Neural networks
Definition of neural networks
PCA versus autoencoder

A few reminder on the optimization procedure

Neural networks

Definition of neural networks

10

About f: neural networks

dim:n

<

Layer1

Layer 2

Layer L

11

About d and e : neural networks

— encoder : e MR

dim:n > dim:n

Layer | made of
n_| nodes

12

About neural networks

One neuron : f;(X) = ¢(< wj,x > + b;) where

= ¢ the activation function : non linear

L} VVJ':(VVJ'17”

= b is the bias of neuron j.

., w/") are the weights of the input variables (x',...,x")

At each layer /¢ of the neural network:

— —
= (.yl 17"'7yr€[,11)

= Create ny new variables. For variable j of layer /:

= Receive ny_; input variables y‘~!

i =o(< wiy Tt > +b))
Unknown parameters 6

= wfeR™ ! forl=1,...L forj=1,...,n,
. beR, for ¢ =1,...L forj=1,...,ny,

13

Model choice

To choose:

= The number of layers L

= The number of neurons in each layer: ny :
= possibly ng > n

= For autoencoder the middle layer m < n

= The activation function ¢ (possibly one for the hidden layers ¢ and
one 1 for the activation layer)

14

Learning f,d and e

= Regression or classification

0= (Wf, bf)jzl,___,,,ﬂygzly__,,L are calibrated on a dataset (X;, Y;)i=1.....n,,.
by minimizing the loss function

Nobs

= argmingcg Z Loss(Y; — fy(Xi))
i=1

= Autoencoder
0= (Wf, bf)j:]__m’nl{’g:]_w,’[_ are calibrated on a dataset (X;)i=1... n,, by

minimizing the loss function

Nobs

b= argmingcg Z ||X; — dp o eg(X:)]]?
i=1

Optimisation by Stochastic gradient descent: see later for a reminder
of the principle B

Neural networks

PCA versus autoencoder

16

PCA versus autoencoder

= Let P e M, »n(R),
= Hyp.:
PP =1,
= Let P'X; is the projector of vector X; on the sub-vectorial space
generated by the columns of P.
= We are looking for P minimizing the inertia of the projected dataset:

= Nobs
P = argmaxpew, ,(v),p'P=I,} Z 1P/ X2
i=1

Nobs

= argmin{PeMn,m(R),P,P:,n} Z HX, — PP/X,'HZ
i=1

17

PCA versus autoencoder

= W’ = e : linear encoder function

= W = d : linear decoder function

= Note that if you use neural networks with linear activation function
and one layer, you will get W not necessarily orthogonal.

Link to a rigourous and clear demonstration

18

http://www.xavierdupre.fr/app/mlstatpy/helpsphinx/c_ml/rn/rn_9_auto.html

Neural networks

A few reminder on the optimization procedure

19

Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

= Choose an initial value of parameters 6 and a learning rate p

= Repeat until a minimum is reached:

= Split randomy the training set into Ng batches of size b (n = b x Npg)
= for each batch B set:

6:=6— p% D Vo {Loss(f(X;,0), Yi)}
ieB

Remarks:

= Each iteration is called an epoch.
= The number of epochs and batches are parameters to tune

= Difficulty comes from the computation of the gradient

20

Calculus of the gradient for the regression

= YeR
» R; = Loss(f(X;,0),Y;) = (Y; — f(X;,0))?

= For any activation function ¢ (hidden layers) and ¢

21

Partial derivatives of R; with respect to the weights of the last

layer

= Derivatives of R; = (Y; — £(X;,0))* = (Yi— h(L“)(X,-))2 with

respect to (WJ-(L+1))j=1...J,

. a(L+1)(X) = pL+1) 4 W(L+1)h(L)(x) c R/

f(X,0) = hED(X)
(al (X))
J
' (buﬂ) +> vvf“”hﬁ”(x>>
j=1
: OR;

P =2(Y: — f(X;,0)) 9’ (a(L+1)(Xi)) A (X))
ij

22

Partial derivatives of R; with respect to the weights of the layer

[-1

= Derivatives of R; = (Y; — h(LJrl)(X,-))2 with respect to

L
(Wi)=t dom=1.. s

R _ : o (D)) 2 L x
9 J(,ﬁ) 2(Yl—f(xz,9))¢ (a (l)) aWJ(,#) (l)

23

Partial derivatives of R; with respect to the weights of the layer

L-2

Ju
a(L+1)(X) _ b(L+1)_|_ZWj(L+1)hJ(_L)(X)
j=1
(L)), o
_ b(L+1)+ZWL+1¢ L+Z
j=1

N/
0
aw® X)) = w g (bf(L) +> "Vj(rﬁ)h(nf_l)(x"))
W

jm m=1
x A1 (X;)
= w"Ye (@ (X)) AL (Xs)

24

Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

= Given the current parameters

= Forward step : From layer 1 to layer L 4+ 1, compute the

a7 (Xi), ¢(a; (Xi))
= Backward step : From layer L 4 1 to layer 1, compute the partial
derivatives (recurrence formula update)

25

Tuning the algorithm

= p: learning rate of the gradient descent
= if p too small, really slow convergence with possibly reaching of a
local minimum
= if p too large, maybe oscilliation around an optimum without
stabilisation
= Adaptive choice of p (decreasing p)
= Batch calculation reduces the number of quantities to be stored in
the forward / backward

26

Many improved versions of the maximisation algorithm (momentum
correction, Nesterov accelerated gradient, etc. . .)

27

Automatic differentiation

Success of the neural network comes from automatic differentiation,
i.e. automatisation of the previously described forward-backward
procedure to compute the derivatives : Tensorflow

28

Variational versions of neural networks
Motivations
Variational (probabilistic) autoencoder

Variational bayesian inference

29

Variational versions of neural networks

Motivations

30

Why variational neural networks?

Regression-Classification : Bayesian inference of the parameters 6

= Prior on 6: 7(6)
= Estimation not of § but of the posterior distribution of 6 : p(6]Y)

Autoencoder: give a structure on the latent space Z

= Distribution on Z: 7(Z)

= Point estimation of 6 and estimation of the posterior
distribution of Z : p(Z|6, X)

Variational : approximation of the distributions

= p(0]Y) ~ qv(0)
= p(Z16,X) ~ gx(2)

31

Using the autoencoder to simulate

Simulator of z's of
dimension m

decoder:d

z=elx) \

~

dim:m
\
~J1

= The optimization of the autoencoder supplies
(217 coog ZNobs) = (e(X1)7 2009 e(XNabs))

= How can we simulate the z’s such that d(z) looks like my original
data?

= How to construct a “machine” able to generate coherent other Z;.

= Need to constrain/ structure the latent space.

32

Using the autoencoder to generate images

r59@i3§iﬂ@
’Sg 96“-‘ -

Probabilistic version of the autoencoder

= lIdea : put a probabilistic distribution on the latent space and
estimate the posterior distribution.
= A statistical model with latent variables

Xi = d(Z,‘) + €
Zi ~jid. Nm(0, 1)
€i ~i.i.d. Na(0, cly)

= Likelihood
(X; d) = / p(X|Z; d)p(Z)dZ

Not explicit

= EM requires the posterior distribution of Z

P(Z|X; d) < p(X|Z; d)p(Z) 34

Variational versions of neural networks

Variational (probabilistic) autoencoder

35

The problem

Xi = do(Zi) +e
Zi ~ id.Nn(0,/In)
& ~ iidNa(0,0°I,)

Likelihood
UX; dp) = /é(X|Z;dg)p(Z)dZ
Jz

No explicit form, linked ot the fact that p(Z|X; dg) is complex

36

The Evidence Lower BOund (ELBO)

= Let's simplify that distribution p(Z|X; dp)

p(Z|X;dy) = ax(Z; g, H)
Nops Nobs
[[p(ziXids) ~ []ax(Zie H)
i=1 i=1

ax(Zi;g, h) = Nm(g(Xi), H(g(X)))

where g and H are chosen such that Dk (q(Z; X, g, H), p(Z|X; dy))
is small

= Replace the likelihood by the ELBO

ELBO(dp, g, H) = U(X;dp) — Dki(q(Z: X, g, H), p(Z|X; d))
Eox(z:g,H) 108 P(X|Z; dy)] — Dk(gx(Z; g, H), p(Z))

37

Optimization: minimize —ELBO(d, g, H)

_ELBO(d/g7 H) = _qu(z;g,H)[log p(X'Z, d@)] + DKL(C])((Z; 8, h)7 p(Z))
= Reconstruction term

Nobs

|X; — do(Z)|I?
EQX(Z;g,H) [log p(x‘zy dﬁ)] = qu(z;gJ’) [Z T
=il

= Regularisation term : Dk

= o2 : variance parameter which balances regularisation and

reconstruction

38

About dy, g and H

dy neural network function as before
About g and H : called the "encoder part"

= H(X) is a covariance so
= it should be a square symmetric matrix
= Simplification: diagonal matrix H(X) = diag(h*(X)) where
h(X) € R™
* h(X) = ha(h(X)) g(X) = g2(&1(X)). &1 = m

= g»,&, h; neural networks

o =h(x) =h,(h,(x))
39

About the expectation

* Eo(zieh) {Z,j’f w} can not be evaluated.

= Monte Carlo approximation on 1 realization

= Reparametrisation trick

Z7™ = g(X) + diag(h(X))G, with & ~ Nin(0. L)

Z X, - d. Z)|

= |[Xi — do(Z)[17 *de DI
qx(Zgh

Nobs

Z X — de(g(Xi);Ugiag(h(Xi))QN\2

i=1

40

Finally...

N(o,)

o =h(x) x=1(2)

loss = C||x-xX]|* + KLIN(1 ,0),N(O,)] = C|[x-f(z)|]> + KL[N(g(x), h(x)), N(O,)]

41

Variational versions of neural networks

Variational bayesian inference

42

Principal of variational Bayesian inference

= Approximate the posterior p(0|Y) by q(0) where g € R
= R family of simpler distributions. Example: q(-) = N (u, X)

= Approximating = Minimizing

Dxo(q(0), p(0]Y)) = Eg |:|Og q(0) }

p(6Y)

43

The Magik trick

Di(q(6), p(6]Y)) = log £(Y) + | — Eq[log £(Y|0)m(6)] + Eg[log q(6)]

F(q)

= log/(Y) independent of g
= Minimizing the Kullback—Leibler divergence w.r. to g is equivalent
to minimizing F(q) with respect to g

Fla) = —Eqllog(Y|0)x(6)] + Eqlog o(0)] 1)
_ q(9)
— o (YI0)] + E, [log) @

= Dxi(g,m) — Eqllog ((Y10)] (3)

a4

Parametrization of g

Choose a parametric form in ¢ = q,,.

= For example: ¢ = N (p, ¥)

7) = arg min F(n) = arg min DxL(q,, 7) — Eg, [log £(Y[0)]
" "

= Optimisation by gradient descent
= BUT expectation not explicit

45

Monte Carlo approximation

= With neural networks, Eg, [log £(Y[6)] not explicit (activation
functions non linear)

= Approximation by Monte Carlo : assume that 6(™ ~ Gy,
m=1....M

M

1 q
= M Z IOg "7(
m=1

= Problem: we lost the explicit dependence in 7 through the
simulations 6(™)

m)

— log £(Y]0(™)

= Solution : reparametrisation

f(m) ~ ./\/'(07 1) and p(m) — ¢(§(m)’)

Z 0g g, ((£'™,m))—log m(4(£\™, m))—log £(Y|$(£\™,)

46

M
Z 0g g, ((¢'™,m)) — log (4 (6™, 7)) — log £(Y[p (6™, 7))

= People take M =1

= Dk (gy, ™) may be explicit (for Gaussian distributions for instance)
but not used in practice

= £(™ are resimulated each time we compute the gradients

47

More details for the regression case

= O are the parameters (weights and bias)
= Prior gaussian distribution on 6 : 6 ~ N(0,T)
= If regression Y; = fy(X;) + ¢, €~ N(0,0?)
” [1Y: = fgem) (XOII?
e) = 35 e

i=1

48

Conclusion

= Easy to understand all the tools

= Now, how easy is it to encode this?

49

	Basics on regression, classification, reduction of dimension
	Neural networks
	Definition of neural networks
	PCA versus autoencoder
	A few reminder on the optimization procedure

	Variational versions of neural networks
	Motivations
	Variational (probabilistic) autoencoder
	Variational bayesian inference

