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Context

• In statistical learning, two main tasks:
• Regression or classification
• Reduction of dimension

Neural networks are used to construct the regression function,
classifier or encoder-decoder (autoencoder).

• Variational versions are used when we do not want to optimize a
parameter but a probability distribution

• if one wants to structure the latent space
• if one wants to perform Bayesien inference

• Relies on
• Neural networks : we know already
• Variational EM algorithm: we know already, but anyway it is not

complicated
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Regression or classification

• Let (X,Y) be our dataset:
• (X, Y) = (Xi , Yi )i∈1,...,Nobs

• ∀i = 1, . . . , Nobs , Variables Xi ∈ Rn.
• Yi ∈ Y the variable to explain : classification or regression

• Looking for a function f classifier or regression
• f : Rn 7→ Y and
• such that

Y ≈ f (X) ⇔ Loss(Y − f (X)) small

• If regression Loss(Y − f (X)) = ||Y − f (X))||2

• If classification : Loss = cross-entropy
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Regression or classification
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Reduction of dimension

Autoencoders are used for the reduction of dimension of (large)
datasets.

Let X be our dataset: X = (Xi)i∈1,...,Nobs

• ∀i = 1, . . . ,Nobs , Xi ∈ Rn.
• Looking for two functions

• Encoder e : Rn 7→ Rm and
• Decoder d : Rm 7→ Rn

• such that

X ≈ d(e(X )) ⇔ ||X − d(e(X ))||2 small

• Z = e(X ) : latent variable
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Autoencoder
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About f : neural networks
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About d and e : neural networks
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About neural networks

One neuron : fj(X) = ϕ(< wj , x > + bj) where

• ϕ the activation function : non linear
• wj = (w1

j , . . . ,wn
j ) are the weights of the input variables (x1, . . . , xn)

• bj is the bias of neuron j .

At each layer ℓ of the neural network:

• Receive nℓ−1 input variables yℓ−1 = (y ℓ−1
1 , . . . , y ℓ−1

nℓ−1
)

• Create nℓ new variables. For variable j of layer l :

y ℓ
j = ϕ(< w ℓ

j , yℓ−1 > +bℓ
j )

Unknown parameters θ

• w ℓ
j ∈ Rnℓ−1, for ℓ = 1, . . . L, for j = 1, . . . , nℓ,

• bℓ
j ∈ R, for ℓ = 1, . . . L, for j = 1, . . . , nℓ,
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Model choice

To choose:

• The number of layers L
• The number of neurons in each layer: nℓ :
• possibly nℓ > n
• For autoencoder the middle layer m < n
• The activation function ϕ (possibly one for the hidden layers ϕ and

one ψ for the activation layer)
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Learning f , d and e

• Regression or classification

θ = (w ℓ
j , bℓ

j )j=1...,nℓ,ℓ=1,...,L are calibrated on a dataset (Xi ,Yi)i=1,...,Nobs

by minimizing the loss function

θ̂ = argminθ∈Θ

Nobs∑
i=1

Loss(Yi − fθ(Xi))

• Autoencoder

θ = (w ℓ
j , bℓ

j )j=1...,nℓ,ℓ=1,...,L are calibrated on a dataset (Xi)i=1,...,Nobs by
minimizing the loss function

θ̂ = argminθ∈Θ

Nobs∑
i=1

||Xi − dθ ◦ eθ(Xi)||2

Optimisation by Stochastic gradient descent: see later for a reminder
of the principle 15
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PCA versus autoencoder

• Let P ∈ Mn,m(R),
• Hyp.:

P ′P = In

• Let P ′Xi is the projector of vector Xi on the sub-vectorial space
generated by the columns of P.

• We are looking for P minimizing the inertia of the projected dataset:

P̂ = argmax{P∈Mn,m(R),P′P=In}

Nobs∑
i=1

||P ′Xi ||2

= argmin{P∈Mn,m(R),P′P=In}

Nobs∑
i=1

||Xi − PP ′Xi ||2
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PCA versus autoencoder

• W ′ = e : linear encoder function
• W = d : linear decoder function
• Note that if you use neural networks with linear activation function

and one layer, you will get W not necessarily orthogonal.

Link to a rigourous and clear demonstration
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Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

• Choose an initial value of parameters θ and a learning rate ρ
• Repeat until a minimum is reached:

• Split randomy the training set into NB batches of size b (n = b × NB)
• for each batch B set:

θ := θ − ρ
1
b
∑
i∈B

∇θ {Loss(f (Xi , θ), Yi )}

Remarks:

• Each iteration is called an epoch.
• The number of epochs and batches are parameters to tune
• Difficulty comes from the computation of the gradient

20



Calculus of the gradient for the regression

• Y ∈ R.
• Ri = Loss(f (Xi , θ),Yi) = (Yi − f (Xi , θ))2

• For any activation function ϕ (hidden layers) and ψ
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Partial derivatives of Ri with respect to the weights of the last
layer

• Derivatives of Ri = (Yi − f (Xi , θ))2 =
(
Yi − h(L+1)(Xi)

)2 with
respect to (w (L+1)

j )j=1...JL

• a(L+1)(X) = b(L+1) + w (L+1)h(L)(X) ∈ RJ

•

f (X, θ) = h(L+1)(X)
= ψ(a(L+1)(X))

= ψ

(
b(L+1) +

JL∑
j=1

w (L+1)
j h(L)

j (X)
)

•
∂Ri

∂w (L+1)
j

= −2 (Yi − f (Xi , θ))ψ′
(

a(L+1)(Xi)
)

h(L)
j (Xi)
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Partial derivatives of Ri with respect to the weights of the layer
L − 1

• Derivatives of Ri =
(
Yi − h(L+1)(Xi)

)2 with respect to
(w (L)

jm )j=1...JL,m=1...JL−1

•

∂Ri

∂w (L)
jm

= −2 (Yi − f (Xi , θ))ψ′
(

a(L+1)(Xi)
) ∂

∂w (L)
jm

a(L+1)(Xi)
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Partial derivatives of Ri with respect to the weights of the layer
L − 2

a(L+1)(X) = b(L+1) +
JL∑

j=1
w (L+1)

j h(L)
j (X)

= b(L+1) +
JL∑

j=1
w (L+1)

j ϕ

b(L)
j +

JL−1∑
m=1

w (L)
jm h(L−1)

m (X)



∂

∂w (L)
jm

a(L+1)(Xi) = w (L+1)
j ϕ′

b(L)
j +

JL−1∑
m=1

w (L)
jm h(L−1)

m (Xi)


×h(L−1)

m (Xi)
= w (L+1)

j ϕ′(aL
j (Xi))h(L−1)

m (Xi)

24



Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

• Given the current parameters
• Forward step : From layer 1 to layer L + 1, compute the

aℓ
j (Xi ), ϕ(aℓ

j (Xi ))
• Backward step : From layer L + 1 to layer 1, compute the partial

derivatives (recurrence formula update)
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Tuning the algorithm

• ρ: learning rate of the gradient descent
• if ρ too small, really slow convergence with possibly reaching of a

local minimum
• if ρ too large, maybe oscilliation around an optimum without

stabilisation
• Adaptive choice of ρ (decreasing ρ)

• Batch calculation reduces the number of quantities to be stored in
the forward / backward
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Obviously

Many improved versions of the maximisation algorithm (momentum
correction, Nesterov accelerated gradient, etc. . . )
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Automatic differentiation

Success of the neural network comes from automatic differentiation,
i.e. automatisation of the previously described forward-backward
procedure to compute the derivatives : Tensorflow
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Why variational neural networks?

Regression-Classification : Bayesian inference of the parameters θ

• Prior on θ: π(θ)
• Estimation not of θ but of the posterior distribution of θ : p(θ|Y)

Autoencoder: give a structure on the latent space Z

• Distribution on Z : π(Z )
• Point estimation of θ and estimation of the posterior

distribution of Z : p(Z |θ,X)

Variational : approximation of the distributions

• p(θ|Y) ≈ qY(θ)
• p(Z |θ,X) ≈ qX(Z )
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Using the autoencoder to simulate

• The optimization of the autoencoder supplies
(Z1, . . . ,ZNobs ) = (e(x1), . . . , e(XNobs ))

• How can we simulate the z ′s such that d(z) looks like my original
data?

• How to construct a “machine” able to generate coherent other Zi .
• Need to constrain/ structure the latent space.
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Using the autoencoder to generate images
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Probabilistic version of the autoencoder

• Idea : put a probabilistic distribution on the latent space and
estimate the posterior distribution.

• A statistical model with latent variables

Xi = d(Zi) + ϵi

Zi ∼i.i.d. Nm(0, Im)

ϵi ∼i.i.d. Nn(0, cIn)

• Likelihood
ℓ(X; d) =

∫
Z

p(X|Z; d)p(Z)dZ

Not explicit

• EM requires the posterior distribution of Z

p(Z|X; d) ∝ p(X|Z; d)p(Z)

Very complex too
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The problem

Xi = dθ(Zi) + ϵi

Zi ∼ i.i.d.Nm(0, Im)
ϵi ∼ i.i.d.Nn(0, σ2In)

Likelihood
ℓ(X; dθ) =

∫
Z
ℓ(X|Z; dθ)p(Z)dZ

No explicit form, linked ot the fact that p(Z|X; dθ) is complex
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The Evidence Lower BOund (ELBO)

• Let’s simplify that distribution p(Z|X; dθ)

p(Z|X; dθ) = qX(Z; g ,H)
Nobs∏
i=1

p(Zi |Xi ; dθ) ≈
Nobs∏
i=1

qXi (Zi ; g ,H)

qXi (Zi ; g , h) = Nm(g(Xi),H(g(Xi))

where g and H are chosen such that DKL(q(Z; X, g ,H), p(Z|X; dθ))
is small

• Replace the likelihood by the ELBO

ELBO(dθ, g ,H) = ℓ(X; dθ) − DKL(q(Z; X, g ,H), p(Z|X; d))
= EqX(Z;g,H)[log p(X|Z; dθ)] − DKL(qX(Z; g ,H), p(Z))
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Optimization: minimize −ELBO(d , g , H)

−ELBO(d , g ,H) = −EqX(Z;g,H)[log p(X|Z; dθ)] + DKL(qX(Z; g , h), p(Z))

• Reconstruction term

−EqX(Z;g,H)[log p(X|Z; dθ)] = EqX(Z;g,H)

[Nobs∑
i=1

||Xi − dθ(Zi)||2
2σ2

]

• Regularisation term : DKL

• σ2 : variance parameter which balances regularisation and
reconstruction
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About dθ, g and H

dθ neural network function as before

About g and H : called the "encoder part"

• H(X ) is a covariance so
• it should be a square symmetric matrix
• Simplification: diagonal matrix H(X) = diag(h2(X)) where

h(X) ∈ Rm

• h(X) = h2(h1(X)), g(X) = g2(g1(X)), g1 = h1

• g2,g2, h1 neural networks
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About the expectation

• EqX(Z;g,h)

[∑Nobs
i=1

||Xi −dθ(Zi )||2

2σ2

]
can not be evaluated.

• Monte Carlo approximation on 1 realization
• Reparametrisation trick

Z sim
i = g(Xi) + diag(h(Xi))ζi , with ξi ∼ Nm(0, Im)

EqX(Z;g,h)

[Nobs∑
i=1

||Xi − dθ(Zi)||2
2σ2

]
≈

Nobs∑
i=1

||Xi − dθ(Z (sim)
i )||2

2σ2

Nobs∑
i=1

||Xi − dθ(g(Xi) + diag(h(Xi))ζi)||2
2σ2
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Finally...
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Principal of variational Bayesian inference

• Approximate the posterior p(θ|Y ) by q(θ) where q ∈ R
• R family of simpler distributions. Example: q(·) = N (µ,Σ)
• Approximating = Minimizing

DKL(q(θ), p(θ|Y)) = Eq

[
log q(θ)

p(θ|Y)

]
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The Magik trick

DKL(q(θ), p(θ|Y)) = log ℓ(Y) +

− Eq[log ℓ(Y|θ)π(θ)] + Eq[log q(θ)]︸ ︷︷ ︸
F(q)


• log ℓ(Y) independent of q
• Minimizing the Kullback–Leibler divergence w.r. to q is equivalent

to minimizing F(q) with respect to q

F(q) = −Eq[log ℓ(Y|θ)π(θ)] + Eq[log q(θ)] (1)

= −Eq[log ℓ(Y|θ)] + Eq

[
log q(θ)

π(θ)

]
(2)

= DKL(q, π) − Eq[log ℓ(Y|θ)] (3)
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Parametrization of q

Choose a parametric form in q = qη.

• For example: q = N (µ,Σ)

η̂ = arg min
η

F(η) = arg min
η

DKL(qη, π) − Eqη [log ℓ(Y|θ)]

• Optimisation by gradient descent
• BUT expectation not explicit
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Monte Carlo approximation

• With neural networks, Eqη
[log ℓ(Y|θ)] not explicit (activation

functions non linear)
• Approximation by Monte Carlo : assume that θ(m) ∼ qη,

m = 1, . . . ,M

F̂(η) = 1
M

M∑
m=1

log qη(θ(m))
π(θ(m))

− log ℓ(Y|θ(m))

• Problem: we lost the explicit dependence in η through the
simulations θ(m)

• Solution : reparametrisation

ξ(m) ∼ N (0, I) and θ(m) = ϕ(ξ(m), η)

F̂(η) = 1
M

M∑
m=1

log qη(ϕ(ξ(m), η))−log π(ϕ(ξ(m), η))−log ℓ(Y|ϕ(ξ(m), η))
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Remarks

F̂(η) = 1
M

M∑
m=1

log qη(ϕ(ξ(m), η)) − log π(ϕ(ξ(m), η)) − log ℓ(Y|ϕ(ξ(m), η))

• People take M = 1
• DKL(qη, π) may be explicit (for Gaussian distributions for instance)

but not used in practice
• ξ(m) are resimulated each time we compute the gradients
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More details for the regression case

• θ are the parameters (weights and bias)
• Prior gaussian distribution on θ : θ ∼ N (0, I)
• If regression Yi = fθ(Xi) + ϵi , ϵ ∼ N (0, σ2)

−ℓ(Y, ϕ(ξ(m), η)) =
[Nobs∑

i=1

||Yi − fϕ(ξ(m),η)(Xi)||2

2σ2

]
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Conclusion

• Easy to understand all the tools
• Now, how easy is it to encode this?
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