Zero inflated Poisson distribution

For Master 2 Math SV

2023

1. The data

We study the abundance of fish species at $n=89$ sites in the Barents Sea (Fossheim, Nilssen, and Aschan (2006)). The data are available in the file BarentsFish.csv where the first 4 columns correspond to four environmental covariates covariates (latitude, longitude, depth, temperature) and the next 30 columns are the abundances of 30 species.

```
abundance <- read.csv("BarentsFish.csv", sep=";")
View(abundance)
```

In the following, we will consider only one fish species, for example the 20 th ('Se_ma $=$ Sebastes marinus $=$ Golden redfish) and we will note $1 \leq i \leq n$.

$$
Y_{i}=\text { abundance of golden redfish in station i. }
$$

1. Explore the data with standard tools (means, histograms...)
```
library(ggplot2)
ggplot(abundance,aes(Se_ma))+geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Observe an over-representation of null values. We propose to modelize this over inflation of 0 .

2. Zero-inflated Poisson model

We propose to consider the following Zero Inflation Poisson distribution (ZIP) Let Z_{i} be a latent variable such that

$$
Z_{i} \sim_{i . i . d} \mathcal{B} \operatorname{ern}(1-\pi)
$$

Then

$$
\begin{equation*}
Y_{i} \mid Z_{i} \sim\left(1-Z_{i}\right) \delta_{\{0\}}+Z_{i} \mathcal{P}\left(\mu_{i}\right) \tag{1}
\end{equation*}
$$

where \mathcal{P} is the Poisson distribution.
2. Write the marginal distribution of Y_{i}
3. Derive $\mathbb{E}\left[Y_{i}\right]$ and $P\left(Y_{i}=0\right)$
4. Write the complete \log likelihood $\log p_{\theta}(\mathbf{Y}, \mathbf{Z})$ of the model where $\theta=(\pi, \mu)$.

We propose to maximize likelihood with respect to the parameters using the EM algorithm
5. Write the corresponding E-step.
6. Write the corresponding M-step.
7. Suggest an initial value for the parameter θ.
8. Code the EM algorithm.

3. ZIP with covariates

We now consider a model similar to ZIP but taking into account the environmental covariates. We note x_{i} the vector comprising these covariates for the site i :

$$
x_{i}=\left[1, \text { latitude }_{i}, \text { longitude }_{i}, \text { depth }_{i}, \text { temperature }_{i}\right] .
$$

We therefore pose : $\left(Z_{i}\right)_{1, \leq i \leq n}$ independent, $\left(Y_{i} \mid Z_{i}\right)_{1, \leq i \leq n}$ independent and

$$
\begin{array}{cll}
Z_{i} \sim \mathcal{B e r n}\left(\pi_{i}\right) & \text { with } \log \left(\frac{\pi_{i}}{1-\pi_{i}}\right) & =x_{i}^{T} \alpha \tag{2}\\
Y_{i} \mid Z_{i} \sim\left(1-Z_{i}\right) \delta_{\{0\}}+Z_{i} \mathcal{P}\left(\mu_{i}\right) & \text { with } \log \mu_{i} & =x_{i}^{T} \beta
\end{array}
$$

The vectors α and β contain the regression coefficients to predict absence and abon- dance conditional on the presence of the species at each site.
9. Write the full \log likelihood $p_{\theta}(\mathbf{Y}, \mathbf{Z})$ of this new model as a function of the parameter $\theta=(\alpha, \beta)$.
10. Write the E-step.
11. Write the M-step.
12. Propose an initial value for the parameter θ.
13. Code the EM algorithm

References

Fossheim, Maria, Einar M. Nilssen, and Michaela Aschan. 2006. "Fish Assemblages in the Barents Sea." Marine Biology Research 2 (4): 260-69. https://doi.org/10.1080/17451000600815698.

