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• Mixture model: one of the most simple latent variable models
• Assumptions

• Observations supposed to be independent,
• Each observation arises from a given class that is unobserved

• Main goal : retrieve the class from which each observation arises
• Also referred as unsupervised classification as we do not dispose of

any observation with known label.
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First toy illustration

Observations described by 2 variables

Observation distribution seems easy to model with one Gaussian
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First toy illustration

Observations described by 2 variables

Data are scattered and subpopulations are observed
According to the experimental design, there exists no external
information about them
This is an underlying structure observed through the data
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First toy illustration

Definition (Mixture model)
It is a probabilistic model for representing the presence of subpopulations
within an overall population.

Yi |Zi = k ∼ N (µk , Σk), P(Zi = k) = πk

what we observe the model the expected results

Z = ? Z : 1 = •, 2 = •, 3 = •

→ It is an unsupervised classification method
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Applications in biology

Technics of clustering widely used in biology. See the Wikipedia page
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Gene expression i

• To build groups of genes with related expression patterns (also
known as coexpressed genes).

• Often such groups contain functionally related proteins, such as
enzymes for a specific pathway, or genes that are co-regulated.

• Ytm gene expression of gene at locus t in condition m = 1, . . . , P
conditions.
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Gene expression ii

Figure from [Parraga-Alava et al., 2018]
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Human genetic

• Better understand the genetic structure of populations
• Relies on the genotyping of large sets of individuals sampled in

different places, environments or with different origins
• Genotype Yit of a series of individuals i ∈ [1, I] at a series of locus

t ∈ [1, T ] is measured
• Aim: distinguish sub-populations.
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Model without ’admixture’

Each individual i is supposed to belong to one population, labeled Zi

(Zi)i iid ∼ M(1; π),
(Yit)i,t indep. | (Zi) ∼ M(2; γZi t),

γkt is the vector of the allelic frequencies at locus t in population k

which makes explicit the fact that, if individual i belongs to population k,
its genotype is generated with the allelic frequencies of its population.
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Model with ’admixture’

(Yit)i,t indep. | (Zi) ∼ M(2; γZi t)
(Zi)i iid ∼ M(1; πi),

πi ∼ D(1; α)

About πi : individual preferential trends characterized

• Dirichlet distribution whose support is the the simplex of RK .
• πi is the position of individual i in the simplex, the vertices of which

correspond to fictitious individuals purely issued from each
population.

Hidden variable is hence (Zi , πi).
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Model with ’admixture’: reformulation

The model can be rewritten also after marginalization over Zit :

(πi)i iid ∼ D(1; α),

(Yit)i,t indep. | (πi) ∼ M

(
1;
∑

k
πikγkt

)
.

The latent variable reduces then to (πi).

See [Pritchard et al., 2000] for more details.
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Expected results

Population origine of series of human genomes with varying number of
groups K . Each column corresponds to an individual. Each individual is
represented by a thin vertical line partitioned into K colored segments
that represent the fractions of the individual’s genome estimated to
belong to the K clusters. From [Rosenberg, 2011].
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Plant and animal ecology i

To describe and to make spatial and temporal comparisons of
communities (assemblages) of organisms in heterogeneous environments.

• Yis : abundancy of species i at location s.

• Not the same repartitions with respect to species.
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Plant and animal ecology ii

[Dunstan et al., 2013]
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Definition

• Let (Yi)i=1,...,n be independent variables
• For each individual i assumes the existence an unknown (or latent)

label Zi that can take a finite number of values among [1, K ].
• The distribution of Yi depends on the value Zi .

Definition

An independent K mixture model is defined as follows: ∀i = 1, . . . , n

P(Zi = k) = πk , (i .i .d)
Yi |(Zi = k) ∼i.i.d Fk = F(γk),

(1)

where
∑K

k=1 π = 1.

Let fk(·) = f (·; γk) be the pdf of distribution of F(γk).
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Alternative fomulations

• Yi |(Zi = k) ∼ F(γk) is equivalent to Yi |Zi ∼ F(γZi )
• Let Zik = 1{Zi =k}

(Zik)k=1,...,K ∼ M(1, π)

where M is the multinomial distribution π = (π1, . . . , πK )
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About the mixture proportions

• πk = proportion of the population k
• Sometimes called prior probabilities although this denomination may

be misleading in a non-Bayesian context.
• Also often refereed to as the proportions of the mixture.
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About the emission distribution

• Conditionally on {Zi = k}, Yi has a parametric distribution
Fk = F(γk) with probability distribution function (pdf)
fk(·) = f (·; γk).

• Fk is called the emission distribution in class k
• It describes how observed data arising from class k are emitted.
• fk is called the emission pdf.
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Other formulation

Useful notations

• Z = (Z1, . . . , Zn)
• Y = (Y1, . . . , Yn)
• π = (πk)k=1,...,K

• γ = (γk)k=1,...,K

• θ = (π, γ)

Conditional distributions

pθ(Z) =
∏n

i=1 πZi =
∏n

i=1
∏K

k=1(πk)Zik ,

pθ(Y|Z) =
∏n

i=1 f (Yi , γZi ) =
∏n

i=1
∏K

k=1 f (Yi , γk)Zik ,

23



Marginal distribution

Marginal pdf. of Yi is the mixture distribution

g(y) =
K∑

k=1
πk f (y ; γk).

Example of a mixture of K = 3
Gaussian distributions
1
3 N (1, 1) + 1

6 N (3, 1) + 1
2 N (5, 32)
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Label switching

Since the (Zi) are not observed, the model is invariant for any
permutation of the labels [1, K ].

Therefore, the mixture model with K classes has K ! equivalent
definitions.
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Number of parameters

• Depends on both the dimension of the data and the number of
groups

•
∑K

k=1 πk = 1, π involves only K − 1
• About γ = (γ1, . . . , γK ), its dimension is typically proportional to

the number of groups K
• For Fk : univariate Poisson distributions with respective mean γk ,

γ of dimension K ⇒ 2K − 1 parameters
• For Fk : d-variate normal distributions (with respective mean vector

µk and variance Σk):

(K − 1) + Kd + Kd(d + 1)/2 ≃ Kd2/2

parameters
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Dependency structures

• The (Zi) are independent;
• the (Yi) are independent conditionally to Z = (Zi)i=1,...,n;
• the couples {(Yi , Zi)}i are iid.

Z1 Zi Zj Zn

Y1 Yi Yj Yn

Graphical representation of a mixture model

27



Remarks

1. Because the {(Yi , Zi)}i are independent, we have that

pθ(Zi |Y) = pθ(Zi |Yi)

which means that the information about the classification of
individual i is contained in the observation Yi .

2. Note that the variables (Yi , Yj) are not independent conditionally on
the event Zi = Zj .
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Two tasks

• For a fixed number of class K , estimating the parameters

π = (π1, . . . , πK ), γ = (γ1, . . . , γK )

θ = (π, γ)

⇒ (Maximum likelihood) estimation
• Would be great to obtain a classification of the observations
• Choosing the number of classes K ⇒ Model selection
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Parameter estimation

• General introduction to finite mixture models and their inference can
be found in [McLachlan and Peel, 2000]

• Most popular inference method: maximum likelihood approach
• Specificity of latent variable models : the observed data

Y = (Yi)i=1,...,n seen as incomplete, as the latent variables
Z = (Zi)i=1,...,n are not observed

• Often referred to as incomplete data models.
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Likelihoods

Definition
The observed data log-likelihood is the marginal log-likelihood of the
observed variables Y:

log pθ(Y).

The complete data log-likelihood is the joint log-likelihood of the
observed Y and latent Z variables:

log pθ(Y, Z).
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Expression of the likelihoods

Proposition (Likelihoods)
For the mixture model (1), the log-likelihood is

log pθ(Y) =
n∑

i=1
log
[ K∑

k=1
πk f (Yi ; γk)

]
,

and, denoting Zik = 1{Zi =k}, the complete log-likelihood is

log pθ(Y, Z) =
n∑

i=1

K∑
k=1

Zik [log πk + log f (Yi ; γk)] .
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Proof

The dependency structure described in previously ensures that

log pθ(Y) =
n∑

i=1
log pθ(Yi) =

n∑
i=1

log g(Yi)

and log pθ(Y, Z) =
n∑

i=1
log pθ(Yi , Zi)

=
n∑

i=1
[log pθ(Zi) + log pθ(Yi |Zi)] .

Remark: log pθ(Yi) not easy to optimize
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About the EM algorithm

• First proposed by [Dempster et al., 1977] for a large class of
incomplete data models, including mixture models.

• Based on a decomposition of the incomplete data likelihood.

Proposition (Decomposition of the log-likelihood)
For any θ and θ′

log pθ(Y) = Eθ′ [log pθ(Y, Z)|Y ] − Eθ′ [log pθ(Z|Y)|Y] .

36



Proof

It suffices to develop

Eθ′ [log pθ(Z|Y)|Y] = Eθ′ [log pθ(Y, Z) − log pθ(Y)|Y]

reminding that Eθ′ [log pθ(Y)|Y] = log pθ(Y ).
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Remarks

1. Decomposition of Slide 36 is convenient bacause makes a connexion
between log pθ(Y) (often intractable) and log pθ(Y, Z) (generally
more manageable).

2. if θ′ = θ, the second term is the entropy of the latent variables Z
given the observed Y:

H[pθ(Z|Y)] := −Eθ[log pθ(Z|Y)|Y]
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EM Algorithm

θ̂ = arg max
θ

log pθ(Y).

Algorithm (EM)
Repeat until convergence:

Expectation step (E-step) given the current estimate θh of θ,
compute pθh (Z|Y), or at least all the quantities needed to compute
Eθh [log pθ(Y, Z)|Y];
Maximization step (M-step) update the estimate of θ as

θh+1 = arg max
θ

Eθh [log pθ(Y, Z)|Y].
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Property

Proposition ([Dempster et al., 1977])
The log-likelihood of the observed data log pθ(Y) increases at each step:

log pθh+1(Y) ≥ log pθh (Y).
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Proof i

Because θh+1 = arg maxθ Eθh [log pθ(Y, Z)|Y], we have

0 ≤ Eθh [log pθh+1(Y, Z)|Y] − Eθh [log pθh (Y, Z)|Y] (2)

= Eθh

[
log pθh+1(Y, Z)

pθh (Y, Z) |Y
]

(3)

≤ logEθh

[
pθh+1(Y, Z)
pθh (Y, Z) |Y

]
(4)

by Jensen’s inequality.
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Proof ii

We further develop logEθh [pθh+1(Y, Z) /pθh (Y, Z) |Y] as

log
∫ pθh+1(Y, Z)

pθh (Y, Z) pθh (Z|Y) dZ = log
∫ pθh+1(Y, Z)

pθh (Y, Z)
pθh (Y, Z)
pθh (Y) dZ(5)

= log
[

1
pθh (Y)

∫
pθh+1(Y, Z) dZ

]
(6)

= log
[

pθh+1(Y)
pθh (Y)

]
(7)

Finally :

log
[

pθh+1(Y)
pθh (Y)

]
≥ 0
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Convergence

There is no general guaranty about the convergence of the EM algorithm
towards the MLE θ̂. The main property is that the observed likelihood
increases at each iteration step.

Although, in practice : very sensible to the initialisation point.
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Illustration of the problems of convergence (I)
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Illustration of the problems of convergence (II)
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Illustration of the problems of convergence (III)
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Application for the mixture model : E step

E-step is straightforward for independent mixture models.

Proposition
In a mixture model (1), the hidden states Zi are independent conditional
on the observations:

pθ(Z|Y) =
n∏

i=1
pθ(Zi |Yi)

and, denoting Zik = 1{Zi =k}, the conditional distribution of each Zi is
given by

τik := Pθ(Zi = k|Yi) = Eθ(Zik |Yi) = πk fk(Yi)∑K
ℓ=1 πℓfℓ(Yi)

.
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Proof i

• First result is a direct consequence of Slide 29

• Second result follows from the Bayes formula

τik = Pθ(Zi = k|Yi) = Pθ(Zi = k)pθ(Yi |Zi = k)
pθ(Yi)

= Pθ(Zi = k)pθ(Yi |Zi = k)∑
ℓ Pθ(Zi = ℓ)pθ(Yi |Zi = ℓ) .

• Pθ(Zi = k|Yi) = Eθ(Zik |Yi) because Zik is binary.
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Proof ii

The update formula’s of the τik at the (h + 1)-th E-step is then

τh+1
ik = πh

k f (Yi ; γh
k )∑

ℓ πh
ℓ f (Yi ; γh

ℓ )

where θh stands for the current estimate of θ resulting from the h-th M
step.
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Remark

Conditional probability τik is sometimes referred to as the posterior
probability for observation i to belong to class k (as opposed to the
prior probability πk).

Again this phrase is misleading in a non-Bayesian context and
’conditional probability’ should be preferred.
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M-step for the mixture model

θh+1 = arg max
θ

Eθh [log pθ(Y, Z)|Y]

We use Proposition on Slide 34 to get an explicit formula for this
quantity

Eθh [log pθ(Y , Z )|Y ] = Eθh

[ n∑
i=1

K∑
k=1

Zik [log πk + log f (Yi ; γk)]|Y
]

=
n∑

i=1

K∑
k=1

Eθh (Zik |Yi)[log πk + log f (Yi ; γk)]

=
n∑

i=1

K∑
k=1

τh
ik [log πk + log f (Yi ; γk)].

Has to be maximized with respect to θ = (π, γ), the τik being fixed
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Application for the mixture model : M step (π) i

πh+1
k = 1

n

n∑
i=1

τh
ik (8)

Indeed:

• Using the Lagrange multiplier to take into account the constraint∑K
k=1 πk = 1

•

∂

∂πk

[ n∑
i=1

K∑
k=1

τh
ik [log πk + log f (Yk ; γk)] − λ

( K∑
k=1

πk − 1
)]

= 0

• Leads to
∑n

i=1
τh

ik
π

(h+1)
k

− λ = 0 and so π
(h+1)
k = 1

λ

∑n
i=1 τh

ik
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Application for the mixture model : M step (π) ii

• Moreover
∑K

k=1 π
(h+1)
k = 1. So

1
λ

∑K
k=1

∑n
i=1 τh

ik = 1
λ

∑n
i=1

K∑
k=1

τh
ik︸ ︷︷ ︸

=1

= n.

• Which implies Formula (8)
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Application for the mixture model : M step (γ)

• For γ : solution of this optimization problem has no general form as
it strongly depends on the model at hand

• Some general formula can be derived in the case of the exponential
family, as we will see in Slide 55
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Exponential family

Definition (Exponential family of distributions)
The distribution f (; γ) belongs to exponential family with canonical
parameter γ if

f (y ; γ) = exp[γ⊺t(y) − a(y) − b(γ)]

where t(y) is the vector of the sufficient statistics.
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Maximum likelihood for the exponential family

Two general properties that show connections between maximum
likelihood estimates and moment estimates for this class of distribution.

Proposition
b′(γ) = Eγ [t(Y )].

Proposition
For an iid sample (Y1, . . . Yn), the MLE γ̂ of γ satisfies

b′(γ̂) = 1
n

n∑
i=1

t(Yi) =: t(Y ).

This shows that the MLE γ̂ is also the moment estimate of γ based on
the mean of the sufficient statistics.

Proof in appendix slides 81 and 83.
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EM for the exponential family

Proposition
If all emission distributions Fk belong to the exponential family with
respective sufficient statistics tk and normalizing functions ak and bk , the
maximization in the M step results in the weighted moment estimates
based on the expectation of the sufficient statistics, i.e. γh+1

k satisfies:

Eγh+1
k

[tk(U)] = T h+1
k

Nh+1
k

where
• U ∼ f (·, γh+1

k ),
• τh+1

ik = Eθh+1 [Zik |Yi ],
• Nh+1

k =
∑n

i=1 τh+1
ik

• and T h+1
k =

∑n
i=1 τh+1

ik tk(Yi).
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Proof i

Complete-likelihood for exponential family

log pθ(Y , Z ) =
n∑

i=1

K∑
k=1

Zik [log πk + log fk(Yi)]

=
n∑

i=1

K∑
k=1

Zik [log πk + γ⊺
k tk(Yi) − ak(Yi) − bk(γk)]

So conditional expectation is

E[log pθ(Y , Z)|Y ] =

= E

[
n∑

i=1

K∑
k=1

Zik [log πk − bk(γk)] |Y

]
+ E

[
n∑

i=1

K∑
k=1

Zik [γ⊺
k tk(Yi ) − ak(Yi )] |Y

]

=
K∑

k=1

Nk [log πk − bk(γk)] +
K∑

k=1

γ⊺
k Tk −

n∑
i=1

τikak(Yi ).
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Proof ii

The derivative with respect to γk is null iff b′
k(γk) = Tk/Nk and the result

follows from the general properties of the exponential family given in
Propositions slide 56.
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Remarks

• T h+1
k

Nh+1
k

is an empirical weighted moment of the Yi

• So the estimate of γk resulting from Proposition slide 56 is a
moment-type estimate

• Depending on the form of Eγk [tk(U)] as a function of γk , this
estimate can have a close form or not
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Expression for some popular models

• Poisson mixture: Fk = P(γk):

γ̂k = 1
Nk

n∑
i=1

τikYi .

• Gaussian mixture: Fk = N (µk , σ2
k):

µ̂k = 1
Nk

n∑
i=1

τikYi , σ̂2
k = 1

Nk

n∑
i=1

τik(Yi − µ̂k)2.

• Multinomial mixture: Fk = M(1; γk), denoting Yia = 1{Yi =a}:

γ̂ka = 1
Nk

n∑
i=1

τikYia.
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About the entropy

H[pθ(Z|Y)] = −Eθ[log pθ(Z|Y)|Y]

Can be calculated using the conditional independence of the Zi given the
data Y:

H[pθ(Z|Y)] =
n∑

i=1
H[pθ(Zi |Yi)]

= −
n∑

i=1
Eθ[log P(Zi = k|Yi)|Yi ] (9)

= −
n∑

i=1

K∑
k=1

τik log τik .
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Fisher information and asymptotic variance of the ML

Asymptotic variance of the maximum likelihood estimate

θ̂ = (π̂, γ̂)

is provided by the Fisher information matrix I by

V∞(θ̂) = I−1
θ

where

Sθ(Y) = ∂θ log pθ(Y)
Iθ = E[Sθ(Y)Sθ(Y)⊺] = −EY

[
∂2

θ2 log pθ(Y)
]

.

Problem: Evaluation of S ′
θ(Y) = ∂2

θ2 log pθ(Y) because pθ(Y) is a sum.
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Louis’s formula i

[Louis, 1982] provides a convenient way to compute the Hessian matrix

S ′
θ(Y) = ∂2

θ2 log pθ(Y),

which only uses by-products of the EM algorithm.

Proposition ([Louis, 1982])

S ′
θ(Y) = E[S ′

θ(Y, Z)|Y] + E [Sθ(Y, Z)Sθ(Y, Z)⊺|Y]
−E[Sθ(Y, Z)|Y]E[Sθ(Y, Z)|Y]⊺.

Proof is given in Appendix on Slide 84.
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Louis’s formula ii

Two main interests:

• Involve the complete likelihood and can, most of the times, be easily
computed (see example in Apppendix Slide 88)

• Last term null when θ = θ̂ = arg max log pθ(Y).
Indeed (see the proof Slide 84)

E[Sθ(Y, Z)|Y] = Sθ(Y) = p′
θ(Y)

pθ(Y)

which is equal to 0 for θ = θ̂ since p′
θ(Y)|

θ̂
= 0.
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How many states?

• K is not known general
• A model with K − 1 classes is nested in a model with K classes :

the likelihood increases as well
• Likelihood not a relevant criterion to estimate K
• Dimension of the parameter θ increases with K .

Penalized likelihood criteria
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Penalized likelihood criterion

• Let θ̂K be the maximum likelihood estimate of θ for a model with K
components:

θ̂K = arg max
θ∈ΘK

log pθ(Y)

where ΘK : parameter space for a K -mixture model
• Penalized likelihood estimate of K :

K̂ = arg max
K

(
log p

θ̂K
(Y ) − pen(K )

)
.
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Bayesian information criterion

• Most commonly used criterion [Schwarz, 1978]
• Originally defined in a Bayesian framework

Three levels of hierarchy:

1. a prior distribution p(K ) for the number of components;
2. a conditional distribution p(θ|K ) for the parameter θ given the

number of components;
3. a likelihood pθ(Y) which corresponds to the conditional distribution

of the observations Y given the parameters: pθ(Y) = p(Y|θ, K ).
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Posterior probability of K

• Model selection problem relies on conditional distribution of K given
the observations:

p(K |Y) = p(Y, K )
p(Y) = p(K )p(Y|K )

p(Y) .

• Ideally, one would choose

K̂ = arg max
K

p(K |Y) = arg max
K

(log p(K ) + log p(Y|K ))

• But log p(Y |K ) = log
∫

p(Y|θ, K )p(θ|K ) dθ

• Difficult to evaluate
• Laplace approximation
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Laplace approximation

Proposition (Laplace approximation)
Under regularity conditions,

log p(Y|K ) = log p
θ̂K

(Y) − dK
2 log n + On(1).

where dK denotes the number of independent parameters in a model with
K components.

• Detailed proof: [Lebarbier and Mary-Huard, 2004], together with
precise comparative study between BIC and another popular model
selection criterion: AIC.

• The term log p(K ) remains fix when n grows large: neglected

71



BIC

Definition

K̂BIC = arg max
K

(
log p

θ̂K
(Y) − dK

2 log n
)

.
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From BIC to Integrated Complete Likelihood (ICL)

Using Proposition 36

log p
θ̂K

(Y) = E
θ̂K

[
log p

θ̂K
(Y, Z)|Y

]
− E

θ̂K

[
log p

θ̂K
(Z|Y)|Y

]
︸ ︷︷ ︸

(1)

• (1): entropy of the classification distribution
• Entropy is small when the observations are classified with reasonable

confidence.
• [Biernacki et al., 2000]: account for the classification uncertainty in

the selection of K
• Penalize value of K with large entropy
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ICL

Definition (ICL)

K̂ICL = arg max
K

(
log p

θ̂K
(Y ) − H[p

θ̂K
(Z|Y)] − dK

2 log n
)

= arg max
K

(
E

θ̂K

[
log p

θ̂K
(Y, Z)|Y

]
− dK

2 log n
)
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Unsupervised classification

• Often the main aim when using a mixture model.
• Maximum likelihood inference provides estimates of θ

• By-product of EM : conditional distribution of the hidden classes Z
conditional to the observed data Y
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Soft classification

τik = P
θ̂
(Zi = k|Y)

• Gives a measure of the confidence with which an observation could
be classified into a given group

• Uncertainty of the classification summarized by:

H[p
θ̂
(Zi |Y)] = H[p

θ̂
(Zi |Yi)] = −

K∑
k=1

τik log τik .

Sometimes referred to as the classification uncertainty
• Entropy of the whole conditional distribution of Z given Y : sum of

all the individual’s uncertainties
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Hard classification

When observations need to be classified into groups, the most common
rule is the ’maximum a posteriori’ (MAP) rule.

Definition

The MAP classification rule is given by:

Ẑ = arg max
z

pθ(Z = z |Y).

• The MAP rule can be applied to each observation label Zi as

Ẑi = arg max
k

τik

• In the case of mixture, equivalent:

Ẑ = arg max
z

pθ(Z = z|Y) = (Ẑi)i

since the Zi are independent conditionally on Y. 78



Conclusion

• Idea really simple.
• Example of R package : mixtools
• Used in many context, even for complexe data. The emission

distribution has to be adapted.
• Next chapter : Hidden Markov Models
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Appendix. Properties of the exponential family i

Proposition
b′(γ) = Eγ [t(Y )].

Remind that the moment generating function of V

m(z) = E[ez⊺V ]

with m′(0) = E(V )

For the exponential family, consider the moment generating function of
the sufficient statistics

m(z) := E[ez⊺t(Y )] =
∫

ez⊺t(y)fγ(y) dy

=
∫

exp[(z + γ)⊺t(y) − a(y) − b(γ)] dy .
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Appendix. Properties of the exponential family ii

Because fγ is a pdf, eb(γ) is a normalizing constant:∫
exp[γ⊺t(y) − a(y)] dy = eb(γ)

⇒
∫

exp[(z + γ)⊺t(y) − a(y)] dy = eb(z+γ)

so

m(z) = e−b(γ)
∫

exp[(z + γ)⊺t(y) − a(y)] dy = eb(z+γ)−b(γ).

The result follows from the fact that
m′(z) = b′(γ + z) ⇒ m′(0) = b′(γ). Go back to the course
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Appendix. Properties of the exponential family i

Proposition
For an iid sample (Y1, . . . Yn), the MLE γ̂ of γ satisfies

b′(γ̂) = 1
n

n∑
i=1

t(Yi) =: t(Y ).

Take the derivative of the log-likelihood∑
i

log p(Yi ; γ) =
∑

i
[γ⊺t(Yi) − a(Yi)] − nb(γ)

with respect to γ.
Go back to the course
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Appendix. Asymptotic variance i

Proposition ([Louis, 1982])

S ′
θ(Y ) = E[S ′

θ(Y , Z )|Y ] + E [Sθ(Y , Z )Sθ(Y , Z )⊺|Y ]
−E[Sθ(Y , Z )|Y ]E[Sθ(Y , Z )|Y ]⊺.

Demonstration

Recalling that

log pθ(Y ) = log
[∑

z
pθ(Y , z)

]
,
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Appendix. Asymptotic variance ii

we have

Sθ(Y ) = p′
θ(Y ) /pθ(Y ) =

∑
z

p′
θ(Y , z) /pθ(Y )

=
∑

z

p′
θ(Y , z)

pθ(Y , z)pθ(Y , z) /pθ(Y ) =
∑

z

p′
θ(Y , z)

pθ(Y , z)pθ(z |Y )

= E
[

∂

∂θ
log pθ(Y , z)

]
= E[Sθ(Y , Z )|Y ]. (10)

Because the second derivative of log f is

(log f )′′ = f ′′

f −
(

f ′

f

)(
f ′

f

)⊺

(11)

the second derivative of log pθ(Y ) is
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Appendix. Asymptotic variance iii

S ′
θ(Y ) = ∂2

∂θ2 log pθ(Y )

= p′′
θ (Y )

pθ(Y ) −
[

p′
θ(Y )

pθ(Y )

] [
p′

θ(Y )
pθ(Y )

]⊺
=

∑
z p′′

θ (Y , z)
pθ(Y ) − E[Sθ(Y , Z )|Y ]E[Sθ(Y , Z )|Y ]⊺.
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Appendix. Asymptotic variance iv

The same trick as in (10) can be combines with (11) for the first term to
get∑

z
p′′

θ (Y , z)

pθ(Y )
=
∑

z

[
p′′

θ (Y , z)
pθ(Y , z)

−
(

p′
θ(Y , z)

pθ(Y , z)

)(
p′

θ(Y , z)
pθ(Y , z)

)⊺

+
(

p′
θ(Y , z)

pθ(Y , z)

)(
p′

θ(Y , z)
pθ(Y , z)

)⊺]
×

pθ(Y , z)
pθ(Y )︸ ︷︷ ︸

=pθ (Z|Y)

=
∑

z

[
∂2

∂θ2 log pθ(Y , z) +
(

p′
θ(Y , z)

pθ(Y , z)

)(
p′

θ(Y , z)
pθ(Y , z)

)⊺]
pθ(z|Y )

= E[S′
θ(Y , Z)|Y ] + E

[
Sθ(Y , Z)Sθ(Y , Z)⊺|Y

]
which completes the proof.

Go back to the course
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Appendix 2: Assymptotic variance for the Poisson emission dis-
tribution i

• Mixture model (1) where F (γk) = P(γk).
• Complete log-likelihood

log pθ(Y , Z ) =
∑
i,k

Zik [log πk − γk + Yi log γk − log(Yi !)]

where πK = 1 −
∑

k<K πk .
• First derivatives

• ∂πk log pθ(Y , Z) =
∑n

i=1
Zik

πk
−
∑n

i=1
ZiK

πK

• ∂γk log pθ(Y , Z) = −
∑n

i=1 Zik +
∑n

i=1
Zik Yi

γk
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Appendix 2: Assymptotic variance for the Poisson emission dis-
tribution ii

• Second derivatives:
• ∂2

π2
k

log pθ(Y , Z) = −
∑n

i=1
Zik

π2
k

+
∑n

i=1
ZiK

π2
K

,

• ∂2
πk ,πℓ

log pθ(Y , Z) =
∑n

i=1
ZiK

π2
K

• ∂2
γ2

k
log pθ(Y , Z) = −

∑n
i=1

Zik Yi

γ2
k

,

• ∂2
γk ,γℓ

log pθ(Y , Z) = 0.

The first term of Prop slide 64 requires the calculation of the following
moments, denoting here EY (·) = E(·|Y ):

EY (∑n
i=1 Zik

)
=

∑n
i=1 τik =: Nk ,

EY (∑n
i=1 ZikYi

)
=

∑n
i=1 τikYi =: Sk .

The second term requires these of
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Appendix 2: Assymptotic variance for the Poisson emission dis-
tribution iii

EY [(∑n
i=1 Zik

) (∑n
i=1 Ziℓ

)]
= EY

(∑n
i=1 ZikZiℓ +

∑
i ̸=j ZikZjℓ

)
=

∑n
i=1 EY (ZikZiℓ)

+
∑

i ̸=j EY (Zik)EY (Zjℓ)
=∗ ∑n

i=1 1{k=ℓ}τik +
∑

i ̸=j τikτjℓ

= 1{k=ℓ}Nk + NkNℓ −
∑n

i=1 τikτiℓ,

E
[(∑n

i=1 ZikYi
) (∑n

i=1 Ziℓ
)]

= 1{k=ℓ}Sk + SkNℓ −
∑n

i=1 Yiτikτiℓ,

EY [(∑n
i=1 ZikYi

) (∑n
i=1 ZiℓYi

)]
= 1{k=ℓ}Qk + SkSℓ −

∑n
i=1 Y 2

i τikτiℓ,

where Qk =
∑n

i=1 Y 2
i τik and ∗ because ZikZiℓ = 0 if k ̸= ℓ.

Go back to the course
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