
Neural nets and latent variable models

Statistiques au sommet de Rochebrune

Pierre Gloaguen
March 25, 2024

Université Bretagne Sud

1

Neural networks

Neural network

• A parameterized function:
fθ : Rdx → Rdy

x 7→ f(x|θ) ,

which is a composition of non linear functions.
• The function depends both on θ and some intermediate non linear functions.

• For instance, for dx = 2, dy = 1, consider a set of biases and Weights
θ = {b1 ∈ R4, b2 ∈ R, W1 ∈ R4×2, W2 ∈ R1×4;

f(x|θ) = tanh (W2 · sigmoid (W1x + b1) + b2) .

We can introduce some intermediary notations and write

σ1(z) := sigmoid(z)

σ2(z) := tanh(z)

h(1) := σ1(W1x + b1) ,

We then have

f(x|θ) = σ2(W2h(1) + b2) .

2

Neural network

• A parameterized function:
fθ : Rdx → Rdy

x 7→ f(x|θ) ,

which is a composition of non linear functions.
• The function depends both on θ and some intermediate non linear functions.
• For instance, for dx = 2, dy = 1, consider a set of biases and Weights

θ = {b1 ∈ R4, b2 ∈ R, W1 ∈ R4×2, W2 ∈ R1×4;

f(x|θ) = tanh (W2 · sigmoid (W1x + b1) + b2) .

We can introduce some intermediary notations and write

σ1(z) := sigmoid(z)

σ2(z) := tanh(z)

h(1) := σ1(W1x + b1) ,

We then have

f(x|θ) = σ2(W2h(1) + b2) .

2

Graphical representation of a neural network

x1

x2

h1

h2

h3

h4

y1

Hidden layer

Input layer

Output layer

3

Deep neural network

• Build a sequence of vectors (h(k))0≤k≤D where D is the depth of a network:

h(0) = x

h(k) = σk(Wkh(k−1) + bk), for 1 ≤ k ≤ D

f(x|θ) = h(D)

4

Graphical representation of a deep neural network

x1

x2

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(2)
1

h
(2)
2

h
(2)
3

y1

Hidden layer 1

Hidden layer 2

Input layer

Output layer

5

Classical non linear functions

• There exists a dictionary of classical non linear functions
• ReLU(x) = max(0, x);
• sigmoid(x) = 1

1+e−x ;

• tanh(x) = ex−e−x

ex+e−x ;
• etc. . .

6

Convolution filter

• In the fully connected context, each neuron is a linear combination of all
neurons of previous layer;

• No relation is imposed between each linear combination (over the rows of
W).

• For computational efficiency, and to impose some invariance, one can
impose that linear combinations only apply locally, and are the same on the
different regions of each layer.

7

Simple convolution filter

• For instance, to create a layer which gives the local differences in the vector:

x =


2
1

−6
4
5


• Define a kernel −1

0
1


The resulting convolutional layer is a vector h of size 5 − 3 + 1 where, for
1 ≤ i ≤ 3:

h =

−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1

 × x =

−8
3
11


- Remark Of course, technical extensions exists to deal with bounds of x (stride
and padding).

8

Convolutional layer

• A convolutional layer imposes a sparse weight matrix whose parameters are
shared among rows:

• For instance, if the convolutional filter implies 3 elements at once:

W =


w1 w2 w3 0 . . . 0
0 w1 w2 w3 0 . . .
...

...
.

...
0 . . . 0 w1 w2 w3



9

Convolutional neural network

x1

x2

x3

x4

x5

h1

h2

h3

y1

y2

Hidden convolutional layer

Input layer

Output layer

10

Neural nets as predictors

• Neural nets were first used for classical learning tasks:
• Classification;
• Regression.

• In this context, we have a data set (x1:n, y1:n):
• xk are the features (explanatory variables):
• yk is the response, a variable to predict (a label or a value).

• f(xk|θ) is a prediction for yk.

11

Neural nets as generators

• Another use of neural nets is for generative modelling;

• Probabilistic framework where the high dimensional data Y are assumed to
arise from a lower dimension random variable Z with a known distribution.

Z ∼ Distribution(·)

Y|Z = f(Z|θ) + E,

where:

• f is a neural network;

• E is some random variable (reconstruction error term).

Figure 1: Source: learnopencv.com/introduction-to-generative-adversarial-networks/
12

Learning parameters of a neural net: cost function

Classical losses functions

• The parameter θ is learnt by minimizing a loss function L(θ):
• In the regression case (for yi ∈ R):

L(θ) =
1
n

n∑
i=1

(yi − f(xi|θ))2

• In the K classes classification (encoding yi = (0, . . . , 0,
k-th value

1 , 0, . . . 0)T),
and with f(xi|θ) being a vector of probabilities:

L(θ) =
1
n

n∑
i=1

yT
i log f(xi|θ).

• In the generative model case, ideally, the loglikelihood:

L(θ) =
1
n

n∑
i=1

log p(yi|θ) =
1
n

n∑
i=1

log
∫

p(yi|zθ)p(z)dz

• Note that, in general, we have:

L(θ) = 1
n

n∑
i=1

Li(θ),

for some function Li(θ).

13

Learning parameters of a neural net: stochastic gradient descent (SGD)

Gradient descent to find θ̂ = argminθL(θ).

Starting from θ(0) and building a sequence (θ(ℓ))ℓ≥0 such that, for ℓ ⩾ 1:

θ(ℓ) = θ(ℓ−1) + γℓ∇θL(θ(ℓ−1)),

where γℓ is a sequence of step sizes decreasing (at an appropriate rate) to 0.

Stochastic gradient descent

In general, with n observations, we have:

∇θL(θ) = 1
n

n∑
i=1

∇θLi(θ)

= EJ [∇θLJ (θ)], where J ∼ UJ1; nK.

Thus, for 1 ≤ m ≪ n,

∇̂θL(θ) := 1
m

m∑
k=1

∇θLJk (θ) where Jk
i.i.d.∼ UJ1; nK,

is an unbiased Monte Carlo estimator of the wanted gradient.

14

Learning parameters of a neural net: stochastic gradient descent (SGD)

Gradient descent to find θ̂ = argminθL(θ).

Starting from θ(0) and building a sequence (θ(ℓ))ℓ≥0 such that, for ℓ ⩾ 1:

θ(ℓ) = θ(ℓ−1) + γℓ∇θL(θ(ℓ−1)),

where γℓ is a sequence of step sizes decreasing (at an appropriate rate) to 0.

Stochastic gradient descent

In general, with n observations, we have:

∇θL(θ) = 1
n

n∑
i=1

∇θLi(θ)

= EJ [∇θLJ (θ)], where J ∼ UJ1; nK.

Thus, for 1 ≤ m ≪ n,

∇̂θL(θ) := 1
m

m∑
k=1

∇θLJk (θ) where Jk
i.i.d.∼ UJ1; nK,

is an unbiased Monte Carlo estimator of the wanted gradient. 14

Learning parameters of a neural net: Chain rule and automatic differentiation

• SGD still requires to compute the gradient of ∇Li(θ);
• Recall that f(x|θ) is built by setting:

h(0) =
(

1
x

)
∈ Rd0 with d0 = dx + 1

h(1) = σ1(θ1h(k−1)), with θ1 =
(
b1, W1

)
, b1 ∈ Rd1 , W1 ∈ Rd1×d0

...

f(x|θ) = σD(θDh(D−1)), with θd ∈ Rdy×dD−1

• Then1:

∇θLi(θ) =


∂Li(θ)

∂θ1
...

∂Li(θ)
∂θD


1As the gradient is a vector, all partial derivatives are implicitly vectorized here

15

Learning parameters of a neural net: Backward propagation algorithm

Notations

For 1 ⩽ k ⩽ D

• z(k) := θkh((k−1)), and recall that h(k) = σk(z(k));
• ∂h(k)

∂z(k) is a Rdk -vector of elementwise derivatives;
• ⊙: elementwise product for a vector, ×: matrix product;

Algorithm

• For all 1 ⩽ k ⩽ D:
dk×dk−1 matrix

∂Li(θ)
∂θk

=
(

δk ⊙ ∂h(k)

∂z(k)

)
× h(k−1)T

,

where δk := ∂Li(θ)
∂h(k) ∈ Rdk

• For any 1 ⩽ k < D, δk satisfies the backward recursion:

δk = θT
k+1 ×

(
δk+1 ⊙ ∂h(k+1)

∂z(k+1)

)
.

16

Learning parameters of a neural net:

• Note that most times are used multiple times, and easily computed;
• Computation of simple derivatives is easily done using automatic

differentiation during the forward pass;
• A backward pass computes the wanted gradients.

17

Latent variable models

Latent variable models examples

Neural network generative model

For 1 ≤ k ≤ n:

Zk ∼ Ndz (0, Idz) Prior distribution
Yk|Zk ∼ Ndy

(
NeuralNet(Z|θ), σ2Idy

)
, Observation model

• Used to generate complex structures

18

Latent variable models examples

• On n sites, observers count abundances of p species resulting in a n × p

matrix Y
• On each site k, m covariates are measure, resulting in a matrix n × m

matrix X
• The intensity of presence is supposed to depend on covariates through a

linear combination:

Poisson log-normal model

Z = (Zi,j)1≤i≤n,1≤j≤p , Zi,j
ind.∼ N (0, 1) Prior distribution

Y|Z ∼ Poisson(exp (Xθ + Z)), Observation model

where θ is a m × p unknown matrix to estimate.

• Used in joint species modelling

19

Latent variable models examples

Hidden Markov models

χ0(z0|θ) ∽

Y0

Z0

g0(y0|z0, θ)

Y1

Z1

g1(y1|z1, θ)

Y2

Z2

g2(y2|z2, θ)

p1(z1|z0, θ) p2(z2|z1, θ)

Z0 ∼ χ0(z0, θ)
Zt| {Zt−1 = zt−1} ∼ pt(zk|zk−1, θ)

Prior distribution

Yt| {Zt = zt} ∼ gt(yt|zt, θ) Observation model

• Use to model incomplete time series

20

Inference in latent variable models

• Classical learning objectives:
• Computing the log-likelihood:

log p(y1:n) = log
∫

ΩZ

p(z)p(y1:n|z)dz

• Learning the posterior distribution:

p(z|y1:n) =
p(z)p(y1:n|z)

p(y1:n)
• In a bayesian context, learn the full posterior

p(z, θ|y1:n) =
p(z, θ)p(y1:n|z, θ)

p(y1:n)

21

Variational autoencoder

Learning for neural networks generative models

Poisson log-normal model

Z = (Zi,j)1≤i≤n,1≤j≤p , Zi,j
ind.∼ N (0, 1) Prior distribution

Y|Z ∼ Poisson(exp (Xθ + Z)), Observation model

where θ is a m × p unknown matrix to estimate.

• In this context, we aim at learning θ.

• Ideally, we aim at maximizing the log-likelihood:

log p(Y|θ) = log
∫

ΩZ

p(Y|z, θ)p(z)dz

• However the integral is not tractable in general;

• Approximating it by Monte Carlo is not likely to work;

22

Evidence lower Bound

• Let q(z) be a probability density function of ΩZ:

log p(Y|θ) = log
∫

ΩZ

p(Y|z, θ)p(z)dz

= log
∫

ΩZ

p(Y|z, θ)p(z)
q(z) q(z)dz

= logEq

[
p(Y|Z, θ)p(z)

q(z)

]
⩾ Eq

[
log p(Y|Z, θ)p(Z)

q(Z)

]
Jensen’s inequality

= Eq[log p(Y|Z, θ)] − Eq

[
log q(Z)

p(Z)

]
= Eq[log p(Y|Z, θ)] − KL (q(z) ∥ p(z))

:= ELBO(q, θ)

• Note that there is equality iif q(z) = p(z|Y, θ).

23

Variaional inference

• Instead of maximizing the likelihood, variational inference maximizes the
ELBO with respect to q and θ:

(
q̂, θ̂

)
= argmaxq,θELBO(q, θ).

• As q is a p.d.f., this maximization is unfeasible (unless p(z|Y, θ) is known).
• In variational inference, the family of possible distributions for q is restricted

to a “simple” parameteric family;
• For instance, when there is one latent variable per observation, one can set

q(z1:n) =
n∏

i=1

q(zi),

where q(zi) is the p.d.f. of a Ndz

(
µi, σ2

i Idz

)
.

• Note that choosing a family for q imposes to choose both a dependence
structure and parameteric distributions.

24

Example on PLN

Pose a mean field gaussian family for the approximation of Z|Y :

q(Z) =
n∏

i=1

p∏
j=1

qi,j(zi,j), where qi,j(zi,j) : p.d.f. of N
(
µi,j , σ2

i,j

)
ELBO(q, θ) = Eq[log p(Y|Z, θ)] − KL (q(z) ∥ p(z))

=
n∑

i=1

p∑
j=1

(
Eqi,j [log p(Yi,j |Zi,j , θ)] − KL (qi,j(z) ∥ p(z))

)
.

• For a current estimate θ̂(0), maximizing w.r.t. q results in n × p

maximizations of the functions

f(µi,j , σ2
i,j) = Yi,jµi,j−exp

(
(Xθ̂(0))i,j + µ2

i,j +
σ2

i,j

2

)
−1

2
(
µ2

i,j + σ2
i,j − log σ2

i,j

)
• This results in 2 × n × p parameters for the distribution of Z|Y.
• Note that no explicit link is made between each estimated (µi,j , σ2

i,j)
especially, the dependence on Yi,j is not explicit.

25

Example on PLN

Pose a mean field gaussian family for the approximation of Z|Y :

q(Z) =
n∏

i=1

p∏
j=1

qi,j(zi,j), where qi,j(zi,j) : p.d.f. of N
(
µi,j , σ2

i,j

)
ELBO(q, θ) = Eq[log p(Y|Z, θ)] − KL (q(z) ∥ p(z))

=
n∑

i=1

p∑
j=1

(
Eqi,j [log p(Yi,j |Zi,j , θ)] − KL (qi,j(z) ∥ p(z))

)
.

• For a current estimate θ̂(0), maximizing w.r.t. q results in n × p

maximizations of the functions

f(µi,j , σ2
i,j) = Yi,jµi,j−exp

(
(Xθ̂(0))i,j + µ2

i,j +
σ2

i,j

2

)
−1

2
(
µ2

i,j + σ2
i,j − log σ2

i,j

)
• This results in 2 × n × p parameters for the distribution of Z|Y.
• Note that no explicit link is made between each estimated (µi,j , σ2

i,j)
especially, the dependence on Yi,j is not explicit.

25

Variational autoencoder

• To potentially reduce the number of parameters, and create functional link
between Yi,j and µi,j , one can add an amortization constraint:

q(Z) =
n∏

i=1

p∏
j=1

qi,j(zi,j),

qi,j(zi,j) ∼ N
(
µi,j , σ2

i,j

)
(µi,j , σ2

i,j) = NeuralNet(Yi,j |λ),

where λ is a parameter common to all Yi,j 7→ (µi,j , σ2
i,j).

• The ELBO becomes a function of (θ, λ). The part to maximize in λ is:

f(λ) =
n,p∑

i,j=1

{
Yi,jµλ(Yi,j) − exp

(
(Xθ̂(0))i,j + (µλ(Yi,j))2 + σλ(Yi,j)

2

)
−1

2
(
(µλ(Yi,j))2 + σλ(Yi,j) − log σλ(Yi,j)

)}

26

Variational autoencoder

• To potentially reduce the number of parameters, and create functional link
between Yi,j and µi,j , one can add an amortization constraint:

q(Z) =
n∏

i=1

p∏
j=1

qi,j(zi,j),

qi,j(zi,j) ∼ N
(
µi,j , σ2

i,j

)
(µi,j , σ2

i,j) = NeuralNet(Yi,j |λ),

where λ is a parameter common to all Yi,j 7→ (µi,j , σ2
i,j).

• The ELBO becomes a function of (θ, λ). The part to maximize in λ is:

f(λ) =
n,p∑

i,j=1

{
Yi,jµλ(Yi,j) − exp

(
(Xθ̂(0))i,j + (µλ(Yi,j))2 + σλ(Yi,j)

2

)
−1

2
(
(µλ(Yi,j))2 + σλ(Yi,j) − log σλ(Yi,j)

)}
26

Variational autoencoder

• This idea comes from neural nets generative models;
• This framework enables representation learning (encoding) within a

generating (decoding) model;

Figure 2: Source: fr.mathworks.com/

27

Gradient of the ELBO

• In general, the ELBO2

ELBO(λ, θ) = Eqλ [log p(Y|Z, θ)] − KL
(
qλ(z) ∥ p(z)

)
,

does not have an explicit form, because of the expectation.

• The KL term is not a problem in general;

• Stochastic gradient approach requires to compute

∇λ,θEqλ [log p(Y|Z, θ)] .

• For a fixed λ, we have that:

∇θEqλ [log p(Y|Z, θ)] = Eqλ [∇θ log p(Y|Z, θ)] ,

which can be estimated by Monte Carlo, using samples from qλ.

• For a fixed θ, however:

∇λEqλ [log p(Y|Z, θ)] ̸= Eqλ [∇λ log p(Y|Z, θ)] ,

as the integration is w.r.t. qλ.
2We now denote qλ to higlight the dependence of the distribution in this parameter

28

Gradient of the ELBO (2)

∇λEqλ [log p(Y|Z, θ)] = ∇λ

∫
ΩZ

log p(Y|Z, θ)qλ(z)dz

̸= Eqλ [∇λ log p(Y|Z, θ)] ,

• Nonetheless, using the fact ∇λqλ = qλ × ∇λ log qλ, we have that:

∇λEqλ [log p(Y|Z, θ)] =Eqλ [∇λ log p(Y|Z, θ)]

+ Eqλ

[
log p(Y|Z, θ) × ∇λ log qλ(Z)

]
,

which can be estimated by Monte Carlo, using samples from qλ.
• This direct Monte Carlo estimator can have high variance;
• Different variance reduction techniques can be used;
• A popular one is the reparametrization trick:

29

Reduction of variance through the reparametrization trick

• Suppose that you can write

Z = r(ε, λ) ,

where ε is a random variable whose distribution does not depend on λ, and
r(·, λ) is a known function

• For instance, if Z ∼ N
(
λ1, λ2

2
)
, take ε ∼ N (0, 1), and r(ε, λ) = λ1 + λ2ε.

• In this case:

∇λEqλ [log p(Y|Z, θ)] = Eε[∇λ log p(Y|r(ε, λ), θ)] ,

which can be estimated without bias, by Monte Carlo sampling, using
samples from ε.

30

Variational inference and Hidden Markov
models

Back to HMM

Hidden Markov models

χ0(z0|θ) ∽

Y0

Z0

g0(y0|z0, θ)

Y1

Z1

g1(y1|z1, θ)

Y2

Z2

g2(y2|z2, θ)

p1(z1|z0, θ) p2(z2|z1, θ)

Z0 ∼ χ0(z0, θ)
Zt| {Zt−1 = zt−1} ∼ pt(zk|zk−1, θ)

Prior distribution

Yt| {Zt = zt} ∼ gt(yt|zt, θ) Observation model

31

Posterior distribution in HMM

In this context, the posterior distribution Z0:n|Y0:n satisfies the following
factorization:

p0:n(z0:n|Y0:n, θ) := p(zn|Y0:n, θ)
n∏

t=1

p(zt−1|zt, y0:(t−1), θ)

and has the structure of Markov chain.

32

Variational HMM, or VHMM

33

Variational HMM, or VHMM

33

Variational family for HMM

• Idea (Campbell et al. (2021)), parameterize the variational with the same
backward decomposition as the target distribution:

qλ
0:n(z0:n) = qλ

n(zn)
n∏

k=1

qλ
t−1|t(zk−1|zk).

- How can we parameterize the distribution of each brick for efficient estimation?

34

Variational kernels

• For each t ⩾ 0, qλ
t (zt) aims at mimicking the filtering distribution

(i.e. Zt|Y0:t);
• We impose that qλ

t (zt) is the p.d.f. of a gaussian distribution with natural
parameter ηλ

t defined in the following way:
• η0 = NeuralNet(h0|λ), where NeuralNet(y0|λ);
• For t > 0, ηt = NeuralNet(ht|λ), where NeuralNet(ht−1, yt|λ).

• This recursion (called a recurrent neural network), mimicks the
predict-update steps of filtering recursions in HMM.

• Impose qλ
t−1|t(zk−1|zk) to be the p.d.f. of a gaussian distribution with

parameter ηλ
t−1|t;

• To link3 qλ
t−1|t(zk−1|zk) to qλ

t−1 and zt, we impose that:

ηλ
t−1|t = ηλ

t−1 + η⃗λ
t ,

where η⃗λ
t = NeuralNet(zt|λ) is a gaussian natural parameter.

3Recall that p(zt−1|zt, y0:t−1, θ) ∝ p(zt−1|y0:t−1, θ)p(zt|zt, θ)

35

Variational kernels

• For each t ⩾ 0, qλ
t (zt) aims at mimicking the filtering distribution

(i.e. Zt|Y0:t);
• We impose that qλ

t (zt) is the p.d.f. of a gaussian distribution with natural
parameter ηλ

t defined in the following way:
• η0 = NeuralNet(h0|λ), where NeuralNet(y0|λ);
• For t > 0, ηt = NeuralNet(ht|λ), where NeuralNet(ht−1, yt|λ).

• This recursion (called a recurrent neural network), mimicks the
predict-update steps of filtering recursions in HMM.

• Impose qλ
t−1|t(zk−1|zk) to be the p.d.f. of a gaussian distribution with

parameter ηλ
t−1|t;

• To link3 qλ
t−1|t(zk−1|zk) to qλ

t−1 and zt, we impose that:

ηλ
t−1|t = ηλ

t−1 + η⃗λ
t ,

where η⃗λ
t = NeuralNet(zt|λ) is a gaussian natural parameter.

3Recall that p(zt−1|zt, y0:t−1, θ) ∝ p(zt−1|y0:t−1, θ)p(zt|zt, θ)

35

Variational learning for HMM

• This allows to learn representation of times series;
• This factorization is prone to online learning (i.e. learning of (λ, θ) seeing

each yt once);
• Example model: Chaotic recurrent neural network with dimension 20 for

both X and Y

X0 ∼ N (0, Q), Xt = Xt−1 + ∆
τ

(γW tanh (Xt−1) − Xt−1) + η, t ≥ 1, η ∼ N (0, Q)

Yt = Xt + ϵ, ϵ ∼ St(2), t ≥ 0,

36

Variational learning for HMM

• Online learning of the law of X0:n|Y0:n;
• Learnt on a train time series, used to represent a test time series.

0 1000 2000 3000 4000 5000
Timestep

2

0

2

St
at

es
 d

im
 9

Figure 3: Black: True hidden signal, Red, Green, Blue: Estimated signal after
processing of 1, 10000, 100000 observations

37

Conclusion

• Neural networks are useful tools to design non linear functions;
• Variational autoencoder is classical variational inference with an additional

constraints;
• These ideas are useful bricks that can be implemented for many classical

latent variable models.

38

References

Blei, David M, Alp Kucukelbir, and Jon D McAuliffe. 2017. “Variational
Inference: A Review for Statisticians.” Journal of the American Statistical
Association, no. just-accepted.

Campbell, Andrew, Yuyang Shi, Thomas Rainforth, and Arnaud Doucet. 2021.
“Online Variational Filtering and Parameter Learning.” In Advances in Neural
Information Processing Systems, 34:18633–45.

Kingma, Diederik P, and Max Welling. 2013. “Auto-Encoding Variational Bayes.”
arXiv Preprint arXiv:1312.6114.

Mallat, Stéphane. 2019. “L’apprentissage Par Réseaux de Neurones Profonds.”
Cours du collège de France, https://www.college-de-
france.fr/fr/agenda/cours/apprentissage-par-reseaux-de-neurones-profonds.

39

	Neural networks
	Latent variable models
	Variational autoencoder
	Variational inference and Hidden Markov models

