Duality-based inference for state-space

models

Guillaume KON KAM KING!
Andrea PANDOLFI?
Omiros PAPASPILIOPOULOS?
Marco PIRETTO?
Matteo RUGGIERO*®

"Université Paris-Saclay, INRAE, MalAGE, France
2Department of Decision Sciences, Bocconi University, Milano, ltaly
3BrandDelta
4University of Torino, Italy
5Collegio Carlo Alberto, Torino, lItaly

“Statistigue au Sommet”
Rochebrune, 25 Mars 2024

1/15



A hidden Markov (diffusion) model: example

Cox-Ingersoll-Ross (CIR) process with Poisson observations
Inference taking into account underlying dynamics.

10.0 .
-c L]
gg 7.5 .
?
8 5.0 === Hidden state
] =w= QObserved data
=]
< 25
>

00 ee eeesvee
0 1 2 3 4 5
Time

Inference targets:
p(Xn|¥1:n) (filtering)
p(X1:nly1:n)  (smoothing)
P(O1y1:n),  P(O, X1.nl¥1:n)

X1 ~m(x1)
Xn|(Xn—1 = Xp—1) ~ fe(xn|xnf1)
Yn|(Xn = Xp) ~ ge(yn’Xn)
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Recursive relation for filtering

9(YnlXn) [ P(Xn—11¥1:n-1)f(Xn| Xn—1)dXn1
p(Yaly1:n-1)

P(Xn|}’1 :n) =

Prediction: ¢(&)(dx) :/5(x)f(x|x’)dx’

X

Update: ¢y, (¢)(dx) = T g(()}//:|’))((’))££((i)’())dx'

Filtering recurrence: p(Xa|y1.n) = ¢y, (Y (P(Xn=1]Y1:n-1)))
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Optimal Filtering: intractable prediction

Optimal filtering is almost always an intractable problem,
notably because prediction is intractable in general :

Prediction: 4 (€)(dx) /5 f(x|x")dx" = E [£(Xn)| Xn—1 = X']

@ Cox-Ingersoll-Ross diffusion:
dX; =a(b — X;) dt + o/ X; dB;
f(x|x') = _ Poisson(k|cx')Gamma(x|d + k, €)
k>0
@ Wright-Fisher diffusion:

1

f(x|x") quZBm (I|k, x")Beta(x|61, 62)
k>0 >0

with q,f available only as an infinite series.
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Optimal Filtering: tractable approaches and particle

approximations

@ Inintractable cases, if sampling from f(x|x’) is possible,
one can use a particle approximation:

X~ k=1, .n
)(k‘)(k F\Jf()(k’)(k) k=1 o, n
n
P(€)(dx) =) 6x,(dx)
i=1

@ Discrete state-space case is a tractable exception:

E=) b (O =D Wl
jex JEX
@ We present duality as another approach to obtain

tractable solutions
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Dual Processes

What if there were another process D, such that for a class of
functions h:

E[h(Xn,d) | Xo=x]=E[h(x,Dn) | Dy =d] ?
Xn, Dy are said to be in duality w.r.t. h.

Hope: Take hto (almost) be a filtering distribution and compute
prediction using the more convenient dual process.

CIR

W—0—2P—u

Pure death duals
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What is a good dual process ?

Prediction, now involving E [h(x, Dn) | Dy = d], may become
more tractable:

@ Pure death dual process on a discrete state space:
prediction involves a finite sum, tractable’.

@ Birth-Death dual process: prediction involves a infinite
sum, intractable but easy to truncate/sample from.

@ Other duals ?: some may be easier to handle/sample than
the original process, this may even depend on the
parameters/data at hand.

Remark: following Papaspiliopoulos and Ruggiero (2014), the
dual is determined by the choice of h function.

'Filtering, smoothing and full Bayesian inference on P(0, X1.n|¥1:n)

described in Kon Kam King et al. (2021)
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Dual process on a discrete space x

Let £(dx) = h(x, d")w(dx). Then:

B(h(x, d')r(dx)) = 3 po(d|d)h(x, d)(dx)

dex

with pp transition probabilities for the dual process D,.

Pure death dual: finite number of d such that f(d|d’) # 0

CIR
DDz @

Pure death duals

8/15



Particle filtering on the discrete dual space

In the case where an infinite number of states in y can be
reached from a state d’, we can use a particle approximation.

@ We assume here (e.g. consequence of a convenient prior)
that: £(dx) = 3 wah(x, d)m(dx)

dex

@ We form an N-particle approximation:

~ N Z h(x,d)r(dx),  df ~ > wydg

° Propagatlon of the partlcles via the dual proce%esx
di ~pp(dild) = (¢ Z, h(x, di)m(dx)
AKkin to particle approximation of the (discrete) mixing measure !
Can be cast into a Feynman-Kac process -> usual asymptotic

guarantees
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A variety of dual processes: CIR dualities

Let’s consider a Cox-Ingersoll-Ross diffusion X; with
Poisson(X;) observations.

@ Pure death dual: inhomogeneous death process with
instantaneous rate (d — d — 1): Ay o< dO(t)

e Simulation not trivial (time rescaling/thinning)
e Closed form expression available for arbitrary time
transition

@ Birth-Death dual: homogeneous process jumping from:

d — d+ 1 with rate \y4

d — d — 1 with rate gy

e Easy to simulate (Gillespie algorithm), slow if high rate
e Closed form expression for arbitrary time transition (linear
BD process, Tavaré 2018).
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Comparison of various CIR dual predictions
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@ BD: Birth-Death particle approx, PD: Pure Death particle
approx, BPF: Bootstrap Particle Filter

@ Pure death and Birth-Death duals with 100 particles on a
par with Bootstrap Particle filtering 1500
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Filtering performance comparison
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@ Pure Death particle approximation seems more efficient
@ Would need to take timing into account

@ Dataset/parameter value dependent

BD
~ PD
—— BPF
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A variety of dual processes: Wright-Fisher dualities

Let’s consider a Wright-Fisher diffusion X; with multinomial(X;)
observations.

@ Pure death dual (Kingman’s coalescent): homogeneous
death process with instantaneous rate (d — d — 1): A\g

e Easy to simulate, slow if high rate

o Closed form expression available for arbitrary time
transition (numerical stability is challenging, faster for equal
time steps)

@ Birth-Death dual: homogeneous process jumping from:

d — d + 1 with rate \y4

d — d — 1 with rate pugy

e Easy to simulate, slow if high rate
e No closed form expression for arbitrary time transition.
e May be approximated by a Wright-Fisher diffusion
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Wright-Fisher simulated data
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Wright-Fisher simulated data
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Wright-Fisher simulated data
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Wright-Fisher simulated data
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Prediction in hidden diffusion processes may be performed
using a dual process:
@ may lead to tractable prediction, filtering, smoothing,
inference
@ may provide good approximation strategies
@ depends on the properties of the chosen dual:
e easier to simulate than the original process
e approximation on a different (dual) space

Main motivation: diffusion processes for which only
Birth-Death dual exist

@ Jacobi diffusion

@ Wright-Fisher with selection

Thanks for your attention ! Want further details ?
Check out the ISBA-BNP series seminar of April 5th, 2023

https://bnp-isba.github.io/webinars.html
contact: guillaume.konkamking@inrae.fr .


https://bnp-isba.github.io/webinars.html
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