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A hidden Markov (diffusion) model: example

Cox-Ingersoll-Ross (CIR) process with Poisson observations
Inference taking into account underlying dynamics.
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Hidden state

Observed data

X1 ∼ π(x1)

Xn|(Xn−1 = xn−1) ∼ f θ(xn|xn−1)

Yn|(Xn = xn) ∼ gθ(yn|xn)

Inference targets:
p(xn|y1:n) (filtering)
p(x1:n|y1:n) (smoothing)
p(θ|y1:n), p(θ, x1:n|y1:n)
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Recursive relation for filtering

p(xn|y1:n) =
g(yn|xn)

∫
χ p(xn−1|y1:n−1)f (xn|xn−1)dxn−1

p(yn|y1:n−1)

Prediction: ψ(ξ)(dx) =
∫
χ
ξ(x)f (x |x ′)dx ′

Update: ϕyn(ξ)(dx) =
g(yn|x)ξ(dx)∫

χ g(yn|x ′)ξ(x ′)dx ′

Filtering recurrence: p(xn|y1:n) = ϕyn(ψ(p(xn−1|y1:n−1)))
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Optimal Filtering: intractable prediction

Optimal filtering is almost always an intractable problem,
notably because prediction is intractable in general :

Prediction: ψ(ξ)(dx) =
∫
χ
ξ(x)f (x |x ′)dx ′ = E

[
ξ(Xn)|Xn−1 = x ′]

Cox-Ingersoll-Ross diffusion:

dXt =a(b − Xt) dt + σ
√

Xt dBt

f (x |x ′) =
∑
k≥0

Poisson(k |cx ′)Gamma(x |d + k ,e)

Wright-Fisher diffusion:

dXt =
1
2
(θ1(1 − Xt)− θ2Xt) dt +

√
Xt(1 − Xt) dBt

f (x |x ′) =
∑
k≥0

qθ
k

k∑
l≥0

Bin(l |k , x ′)Beta(x |θ1, θ2)

with qθ
k available only as an infinite series.
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Optimal Filtering: tractable approaches and particle
approximations

In intractable cases, if sampling from f (x |x ′) is possible,
one can use a particle approximation:

x ′
k ∼ξ k = 1, · · · ,n

xk |x ′
k ∼f (xk |x ′

k ) k = 1, · · · ,n

ψ(ξ)(dx) ≈
n∑

i=1

δxk (dx)

Discrete state-space case is a tractable exception:

ξ =
∑
j∈χ

αjδj ψ(ξ)(i) =
∑
j∈χ

ξ(j)f (i |j)

We present duality as another approach to obtain
tractable solutions
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Dual Processes

What if there were another process Dn such that for a class of
functions h:

E [h (Xn,d) | X0 = x ] = E [h (x ,Dn) | D0 = d ] ?

Xn, Dn are said to be in duality w.r.t. h.

Hope: Take h to (almost) be a filtering distribution and compute
prediction using the more convenient dual process.
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What is a good dual process ?

Prediction, now involving E [h (x ,Dn) | D0 = d ], may become
more tractable:

Pure death dual process on a discrete state space:
prediction involves a finite sum, tractable1.
Birth-Death dual process: prediction involves a infinite
sum, intractable but easy to truncate/sample from.
Other duals ?: some may be easier to handle/sample than
the original process, this may even depend on the
parameters/data at hand.

Remark: following Papaspiliopoulos and Ruggiero (2014), the
dual is determined by the choice of h function.

1Filtering, smoothing and full Bayesian inference on p(θ, x1:n|y1:n)
described in Kon Kam King et al. (2021)
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Dual process on a discrete space χ

Let ξ(dx) = h(x ,d ′)π(dx). Then:

ψ(h(x ,d ′)π(dx)) =
∑
d∈χ

pD(d |d ′)h(x ,d)π(dx)

with pD transition probabilities for the dual process Dn.

Pure death dual: finite number of d such that f (d |d ′) ̸= 0
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Particle filtering on the discrete dual space

In the case where an infinite number of states in χ can be
reached from a state d ′, we can use a particle approximation.

We assume here (e.g. consequence of a convenient prior)
that: ξ(dx) =

∑
d∈χ

wdh(x ,d)π(dx)

We form an N-particle approximation:

ξ(dx) ≈ 1
N

∑N

i=1
h(x ,d ′

i )π(dx), d ′
i ∼

∑
d∈χ

wdδd

Propagation of the particles via the dual process

di ∼ pD(di |d ′
i ) ⇒ ψ(ξ)(dx) ≈ 1

N

∑N

i=1
h(x ,di)π(dx)

Akin to particle approximation of the (discrete) mixing measure !

Can be cast into a Feynman-Kac process -> usual asymptotic
guarantees
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A variety of dual processes: CIR dualities

Let’s consider a Cox-Ingersoll-Ross diffusion Xt with
Poisson(Xt) observations.

Pure death dual: inhomogeneous death process with
instantaneous rate (d → d − 1): λd ∝ dΘ(t)

Simulation not trivial (time rescaling/thinning)
Closed form expression available for arbitrary time
transition

Birth-Death dual: homogeneous process jumping from:

d → d + 1 with rate λd

d → d − 1 with rate µd
Easy to simulate (Gillespie algorithm), slow if high rate
Closed form expression for arbitrary time transition (linear
BD process, Tavaré 2018).
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Comparison of various CIR dual predictions

BD: Birth-Death particle approx, PD: Pure Death particle
approx, BPF: Bootstrap Particle Filter
Pure death and Birth-Death duals with 100 particles on a
par with Bootstrap Particle filtering 1500
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Filtering performance comparison

Pure Death particle approximation seems more efficient
Would need to take timing into account
Dataset/parameter value dependent
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A variety of dual processes: Wright-Fisher dualities

Let’s consider a Wright-Fisher diffusion Xt with multinomial(Xt)
observations.

Pure death dual (Kingman’s coalescent): homogeneous
death process with instantaneous rate (d → d − 1): λd

Easy to simulate, slow if high rate
Closed form expression available for arbitrary time
transition (numerical stability is challenging, faster for equal
time steps)

Birth-Death dual: homogeneous process jumping from:

d → d + 1 with rate λd

d → d − 1 with rate µd
Easy to simulate, slow if high rate
No closed form expression for arbitrary time transition.
May be approximated by a Wright-Fisher diffusion
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Wright-Fisher simulated data
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Wright-Fisher simulated data

15 / 15



Wright-Fisher simulated data
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Wright-Fisher simulated data
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Summary

Prediction in hidden diffusion processes may be performed
using a dual process:

may lead to tractable prediction, filtering, smoothing,
inference
may provide good approximation strategies
depends on the properties of the chosen dual:

easier to simulate than the original process
approximation on a different (dual) space

Main motivation: diffusion processes for which only
Birth-Death dual exist

Jacobi diffusion
Wright-Fisher with selection

Thanks for your attention ! Want further details ?
Check out the ISBA-BNP series seminar of April 5th, 2023
https://bnp-isba.github.io/webinars.html

contact: guillaume.konkamking@inrae.fr 1 / 3
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