Diffusion posterior sampling for simulation-based inference in tall data settings

Gabriel V. Cardoso (CMAP - Ecole Polytechnique)

In collaboration with: J. Linhart, A. Gramfort, S. Le Corff, PLC Rodrigues.

March 25, 2024

2 Score Based generative modelling

3 "Tall" Simulation-based inference with Score based generative models

Simulation-based inference

We observe data $\mathcal{D} := \{(x_1, \theta_1), \cdots, (x_n, \theta_n)\}$ from a simulator $(p(x|\theta))$.

Simulation-based inference

We observe data $\mathcal{D} := \{(x_1, \theta_1), \cdots, (x_n, \theta_n)\}$ from a simulator $(p(x|\theta))$.

Given prior information on θ , via $\lambda(\theta)$, our goal is to sample the posterior for a new set of observations x_1^*, \dots, x_n^* :

 $p(\theta|x_1^{\star},\cdots,x_n^{\star}).$

Simulation-based inference

We observe data $\mathcal{D} := \{(x_1, \theta_1), \cdots, (x_n, \theta_n)\}$ from a simulator $(p(x|\theta))$.

Given prior information on θ , via $\lambda(\theta)$, our goal is to sample the posterior for a new set of observations x_1^*, \dots, x_n^* :

 $p(\theta|x_1^{\star},\cdots,x_n^{\star}).$

We assume we cannot evaluate the simulator likelihood $p(x|\theta)$. (It can be result of an ODE, SDE or some complicated fuction of θ !)

Generative models and SBI

Learn $p(\theta|x)$ from the dataset \mathcal{D} using

Conditional normalizing flows¹,

Score based generative models².

¹George Papamakarios et al. "Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows". In: 89 (). Ed. by Kamalika Chaudhuri and Masashi Sugiyama, pp. 837–848.

 $^{^2} Louis$ Sharrock et al. "Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models". In: (), Tomas Geffner et al. "Compositional Score Modeling for Simulation-based Inference". In: ().

Generative models, SBI and "tall" data

How to use the generative model for $p(\theta|x)$ to sample from $p(\theta|x_1^*, \dots, x_n^*)$?

Score and sampling: Langevin algorithm

Let $\Theta_0 \sim \mu_0$ and

$$\Theta_t = \Theta_{t-1} + \gamma
abla \log \pi(\Theta_{t-1}) + \sqrt{2\gamma} \epsilon_t$$
 .

For $\delta > 0$, appropriate choices³ of γ and t lead to $W_2^2(\mathcal{L}(\Theta_t), \pi) < \delta$.

³Alain Durmus et al. "Analysis of Langevin Monte Carlo via Convex Optimization". In: *Journal of Machine Learning Research* 20.73 (), pp. 1–46.

Score matching

Let $s_{\psi}(\cdot)$ be a neural network, $\psi \in \Psi \subset \mathbb{R}^d$.

Let $s_{\psi}(\cdot)$ be a neural network, $\psi \in \Psi \subset \mathbb{R}^d$.

Score Matching

$$\underset{\psi \in \Psi}{\operatorname{argmin}} \mathbb{E}_{\Theta \sim \pi} \left[\| \mathbf{s}_{\psi}(\Theta) - \nabla \log \pi(\Theta) \|^2 \right]$$
(1)

Score matching: Learning from data.

Implicit Score Matching⁴

⁴Aapo Hyvärinen and Peter Dayan. "Estimation of non-normalized statistical models by score matching.". In: *Journal of Machine Learning Research* 6.4 (). ⁵Pascal Vincent. "A connection between score matching and denoising autoencoders". In: *Neural computation* 23.7 (), pp. 1661–1674.

Score matching: Learning from data.

- Implicit Score Matching⁴
- DSM

Denoise Score Matching⁵

If $\Theta_{\sigma} = \Theta + \sigma \epsilon$ with $\Theta \sim \pi$, $\epsilon \sim \mathcal{N}(0, \mathsf{Id})$, $\pi_{\sigma} = \mathcal{L}(\Theta_{\sigma})$ then (2) (for π_{σ}) is equivalent to

$$\underset{\psi \in \Psi}{\operatorname{argmin}} \mathbb{E}_{\Theta \sim \pi, \epsilon \sim \mathcal{N}(0, \mathsf{Id})} \left[\| s_{\psi}(\Theta + \sigma \epsilon) - \underbrace{(-\sigma^{-1} \epsilon)}_{\nabla \log \mathbb{P}(\Theta + \sigma \epsilon | \Theta)} \|^{2} \right].$$
(2)

⁴Aapo Hyvärinen and Peter Dayan. "Estimation of non-normalized statistical models by score matching.". In: *Journal of Machine Learning Research* 6.4 (). ⁵Pascal Vincent. "A connection between score matching and denoising autoencoders". In: *Neural computation* 23.7 (), pp. 1661–1674.

Score Matching: not enough

Figure: Taken from https://yang-song.net/blog/2021/score/.

Multi-level perturbation

Consider $0 < \sigma_1 < \cdots < \sigma_T$, $\Theta_0 \sim \pi$ and for $t \in \{1, \cdots, T\}$

$$\Theta_t = \Theta_{t-1} + \sqrt{\sigma_t^2 - \sigma_{t-1}^2} \epsilon_t \,,$$

where $\epsilon_t \sim \mathcal{N}(0, \mathsf{Id})$.

Multi-level perturbation

Consider $0 < \sigma_1 < \cdots < \sigma_T$, $\Theta_0 \sim \pi$ and for $t \in \{1, \cdots, T\}$

$$\Theta_t = \Theta_{t-1} + \sqrt{\sigma_t^2 - \sigma_{t-1}^2} \epsilon_t \,,$$

where $\epsilon_t \sim \mathcal{N}(0, \mathsf{Id})$.

Figure: Noising an image with increasing Gaussian noise. Taken from https://yang-song.net/blog/2021/score/.

Multi-level perturbation

Consider $0 < \sigma_1 < \cdots < \sigma_T$, $\Theta_0 \sim \pi$ and for $t \in \{1, \cdots, T\}$

$$\Theta_t = \Theta_{t-1} + \sqrt{\sigma_t^2 - \sigma_{t-1}^2} \epsilon_t \,,$$

where $\epsilon_t \sim \mathcal{N}(0, \mathsf{Id})$.

Figure: Noising an image with increasing Gaussian noise. Taken from https://yang-song.net/blog/2021/score/.

Then $\mathcal{L}(\Theta_t) = p_t$ and we can jointly approximate the scores of $\{p_t\}_{t=1}^T$ by:

$$\underset{\psi \in \Psi}{\operatorname{argmin}} \sum_{t=1}^{T} \varkappa_{t}^{2} \mathbb{E}_{\Theta \sim \pi, \epsilon \sim \mathcal{N}(0, \mathsf{Id})} \left[\| \mathbf{s}_{\psi}(\Theta + \sigma_{t} \epsilon, \sigma_{t}) + \sigma_{t}^{-1} \epsilon \|^{2} \right] \,.$$

Current score based generative modelling consists of approximatively sampling backward from p_T to p_1 by exploiting $\{s_{\psi}(\cdot, \sigma_t)\}_{t=1}^T$.

 $^7 \rm Yang$ Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In.

 $^{8}\mbox{Tero}$ Karras et al. "Elucidating the Design Space of Diffusion-Based Generative Models". In.

⁹Jiaming Song et al. "Denoising Diffusion Implicit Models". In.

 $^{^6} Yang$ Song and Stefano Ermon. "Generative modeling by estimating gradients of the data distribution". In: Advances in neural information processing systems 32 ().

Current score based generative modelling consists of approximatively sampling backward from p_T to p_1 by exploiting $\{s_{\psi}(\cdot, \sigma_t)\}_{t=1}^T$.

Several options available: Sequential Langevin⁶, SDE⁷, ODE⁸, "Markov Chain"⁹.

 $^6 Yang$ Song and Stefano Ermon. "Generative modeling by estimating gradients of the data distribution". In: Advances in neural information processing systems 32 ().

⁷Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations". In.

 $^8 {\rm Tero}$ Karras et al. "Elucidating the Design Space of Diffusion-Based Generative Models". In.

⁹ Jiaming Song et al. "Denoising Diffusion Implicit Models". In.

Goal: "Pass" from Θ_t to Θ_{t-1} .

 ${}^{10}m(\theta_0,\theta_t) = \theta_0 + \frac{\sigma_{t-1}^2}{\sigma_t^2}(\theta_t - \theta_0) \text{ and } \sigma_{t-1|t,0}^2 = (\sigma_t^2 - \sigma_{t-1}^2)\frac{\sigma_{t-1}^2}{\sigma_t^2}.$ ${}^{11}\text{Jiaming Song et al. "Denoising Diffusion Implicit Models". In.$

Goal: "Pass" from Θ_t to Θ_{t-1} .

Bridge

$$p_{t-1|t,0}(\theta_{t-1}|\theta_t,\theta_0) = \frac{p_{t|t-1}(\theta_t|\theta_{t-1})p_{t-1|0}(\theta_{t-1}|\theta_0)}{p_{t|0}(\theta_t|\theta_0)} = \mathcal{N}(\theta_{t-1}; m(\theta_0,\theta_t), \sigma_{t-1|t,0}^2 \operatorname{Id}).$$
10

 ${}^{10}m(\theta_0,\theta_t) = \theta_0 + \frac{\sigma_{t-1}^2}{\sigma_t^2}(\theta_t - \theta_0) \text{ and } \sigma_{t-1|t,0}^2 = (\sigma_t^2 - \sigma_{t-1}^2)\frac{\sigma_{t-1}^2}{\sigma_t^2}.$ ¹¹ Jiaming Song et al. "Denoising Diffusion Implicit Models". In.

Goal: "Pass" from Θ_t to Θ_{t-1} .

Bridge

$$p_{t-1|t,0}(\theta_{t-1}|\theta_t,\theta_0) = \frac{p_{t|t-1}(\theta_t|\theta_{t-1})p_{t-1|0}(\theta_{t-1}|\theta_0)}{p_{t|0}(\theta_t|\theta_0)} = \mathcal{N}(\theta_{t-1}; m(\theta_0,\theta_t), \sigma_{t-1|t,0}^2 \operatorname{Id}).$$
10

DDIM Backward kernel

As $\mathbb{E}\left[\Theta_0|\Theta_t = \theta_t\right] = \theta_t + \sigma_t^2 \nabla \log p_t(\theta_t)$, define¹¹,

$$\overleftarrow{p}_{t-1|t}(\theta_{t-1}|\theta_t) = p_{t-1|t,0}(\theta_{t-1}|\theta_t, \theta_0 = \theta_t + \sigma_t^2 \mathbf{s}_{\psi}(\theta_t, \sigma_t)).$$

 ${}^{10}m(\theta_0,\theta_t) = \theta_0 + \frac{\sigma_{t-1}^2}{\sigma_t^2}(\theta_t - \theta_0) \text{ and } \sigma_{t-1|t,0}^2 = (\sigma_t^2 - \sigma_{t-1}^2)\frac{\sigma_{t-1}^2}{\sigma_t^2}.$ ${}^{11}\text{Jiaming Song et al. "Denoising Diffusion Implicit Models". In.$

Diffusion for SBI¹²

In SBI, $\pi = p(\theta|x)$ by learning the scores conditionaly on x:

$$\underset{\psi \in \Psi}{\operatorname{argmin}} \sum_{t=1}^{T} \varkappa_{t}^{2} \mathbb{E}_{(X,\theta) \sim p(X|\theta)\lambda(\theta), \epsilon \sim \mathcal{N}(0, \operatorname{Id})} \left[\| \mathbf{s}_{\psi}(\theta + \sigma_{t}\epsilon, \mathbf{X}, \sigma_{t}) + \sigma_{t}^{-1}\epsilon \|^{2} \right]$$

Then,

$$\mathrm{s}_{\psi}(heta_t, x, \sigma_t) pprox
abla_{ heta_t} \log p_t(heta_t | x) =
abla_{ heta_t} \log \int \mathcal{N}(heta_t; heta, \sigma_t^2 \operatorname{\mathsf{Id}}) p(heta | x) \mathrm{d} heta \, .$$

¹²Tomas Geffner et al. "Compositional Score Modeling for Simulation-based Inference". In: (), Louis Sharrock et al. "Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models". In: ().

Diffusion for SBI

(a) True posterior.

(b) Existing algorithms: SMC-ABC (top left), SNLE (top right), SNPE (bottom left), SNRE (bottom right).

(c) Our algorithms: NLSE (top left), NPSE (top right), SNLSE (bottom left), SNPSE (bottom right).

Figure: Figure taken from [7]¹³

 $^{^{13}\}mbox{Louis Sharrock et al.}$ "Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models". In: ().

"Tall" score: Geffner solution

Following¹⁴ consider $\{\tilde{\pi}_t\}_{t=1}^T$ such that

$$abla \log ilde{\pi}_t(heta_t) = (1-n)
abla \log \overleftarrow{p}_t^\lambda(heta_t) + \sum_{i=1}^n \underbrace{
abla \log \overleftarrow{p}_t(heta_t | x_i^\star)}_{\mathrm{s}_\psi(heta_t, x_j^\star, \sigma_t)}.$$

 $^{^{14}{\}rm Tomas}$ Geffner et al. "Compositional Score Modeling for Simulation-based Inference". In: ().

"Tall" score: Geffner solution

Following¹⁴ consider $\{\tilde{\pi}_t\}_{t=1}^T$ such that

$$abla \log ilde{\pi}_t(heta_t) = (1-n)
abla \log \overleftarrow{p}_t^\lambda(heta_t) + \sum_{i=1}^n \underbrace{
abla \log \overleftarrow{p}_t(heta_t | x_i^\star)}_{\mathrm{s}_\psi(heta_t, x_i^\star, \sigma_t)}.$$

But
$$\left| \tilde{\pi}_t(\theta_t | \mathbf{x}_{1:n}^\star) \neq p_t(\theta_t | \mathbf{x}_{1:n}^\star) = \int \mathcal{N}(\theta_t; \theta, \sigma_t^2 \operatorname{Id}) p(\theta | \mathbf{x}_{1:n}^\star) \mathrm{d}\theta \right|$$

 $^{^{14}{\}rm Tomas}$ Geffner et al. "Compositional Score Modeling for Simulation-based Inference". In: ().

"Tall" score: Geffner solution

Following¹⁴ consider $\{\tilde{\pi}_t\}_{t=1}^T$ such that

$$abla \log ilde{\pi}_t(heta_t) = (1-n)
abla \log \overleftarrow{p}_t^\lambda(heta_t) + \sum_{i=1}^n \underbrace{
abla \log \overleftarrow{p}_t(heta_t | x_i^\star)}_{\operatorname{s}_\psi(heta_t, x_i^\star, \sigma_t)}.$$

But
$$\left| \tilde{\pi}_t(\theta_t | \mathbf{x}_{1:n}^\star) \neq p_t(\theta_t | \mathbf{x}_{1:n}^\star) = \int \mathcal{N}(\theta_t; \theta, \sigma_t^2 \operatorname{Id}) p(\theta | \mathbf{x}_{1:n}^\star) \mathrm{d}\theta \right|$$

Available samplers:

Sequential Langevin ✓, SDEX, ODEX, "Markov Chain"X.

 $^{^{14} {\}rm Tomas}$ Geffner et al. "Compositional Score Modeling for Simulation-based Inference". In: ().

Approximating the posterior score

Tall posterior score $\nabla_{\theta} \log \overleftarrow{p}_{t}(\theta \mid x_{1:n}^{\star}) = \underbrace{(1-n)\nabla_{\theta} \log \overleftarrow{p}_{t}^{\lambda}(\theta) + \sum_{j=1}^{n} \nabla_{\theta} \log \overleftarrow{p}_{t}(\theta \mid x_{j}^{\star})}_{+ \nabla_{\theta} \log L_{\lambda}(\theta, x_{1:n}^{\star}),}$ with $L_{\lambda}(\theta, x_{1:n}^{\star}) := \int \overleftarrow{p}_{0|t}^{\lambda}(\theta_{0}|\theta)^{1-n} \prod_{j=1}^{n} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star}) d\theta_{0}.$

$$L_{\lambda}(\theta, x_{1:n}^{\star}) := \int \overleftarrow{p}_{0|t}^{\lambda}(\theta_{0}|\theta)^{1-n} \prod_{j=1}^{n} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star}) \mathrm{d}\theta_{0}.$$

¹⁵Benjamin Boys et al. "Tweedie moment projected diffusions for inverse problems". In: *arXiv preprint arXiv:2310.06721* (). ¹⁶Jiaming Song et al. "Pseudoinverse-Guided Diffusion Models for Inverse Problems". In.

$$L_{\lambda}(\theta, x_{1:n}^{\star}) := \int \overleftarrow{p}_{0|t}^{\lambda}(\theta_{0}|\theta)^{1-n} \prod_{j=1}^{n} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star}) \mathrm{d}\theta_{0}.$$

Second order approximation

 $\langle \overline{p}_{0|t}(\theta_0|\theta, x_j^{\star}) \approx \mathcal{N}(\theta_0; \mu_t(\theta, x_j^{\star}), \Sigma_t(\theta, x_j^{\star})).$

¹⁵Benjamin Boys et al. "Tweedie moment projected diffusions for inverse problems". In: arXiv preprint arXiv:2310.06721 (). ¹⁶Jiaming Song et al. "Pseudoinverse-Guided Diffusion Models for Inverse Problems". In.

$$L_{\lambda}(\theta, x_{1:n}^{\star}) := \int \overleftarrow{p}_{0|t}^{\lambda}(\theta_{0}|\theta)^{1-n} \prod_{j=1}^{n} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star}) \mathrm{d}\theta_{0}.$$

Second order approximation

$$\overleftarrow{p}_{0|t}(\theta_0|\theta, x_j^{\star}) \approx \mathcal{N}(\theta_0; \mu_t(\theta, x_j^{\star}), \Sigma_t(\theta, x_j^{\star}))$$

$$\mu_t(\theta, x_j^{\star}) := \mathbb{E}\left[\Theta_0 | \Theta_t = \theta, x_j^{\star}\right] = \theta + \sigma^2 \nabla \log \overleftarrow{p}_t(\theta | x_j^{\star}).$$

■ JAC¹⁵:
$$\Sigma_t(\theta, x) := \nabla_{\theta} \mu_t(\theta, x)$$
.
■ COV¹⁶: $\Sigma_t(\theta, x) := \sigma_t^2 \operatorname{Id} + \operatorname{Cov}(\Theta_0|x)$.

¹⁵Benjamin Boys et al. "Tweedie moment projected diffusions for inverse problems". In: *arXiv preprint arXiv:2310.06721* ().
 ¹⁶Jiaming Song et al. "Pseudoinverse-Guided Diffusion Models for Inverse Problems". In.

Under

$$\overleftarrow{p}_{0|t}(\theta_0|\theta, x_j^{\star}) \approx \mathcal{N}(\theta_0; \mu_t(\theta, x_j^{\star}), \Sigma_t(\theta, x_j^{\star})).$$

Under

$$\begin{split} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star}) &\approx \mathcal{N}(\theta_{0}; \mu_{t}(\theta, x_{j}^{\star}), \Sigma_{t}(\theta, x_{j}^{\star})) \,. \\ \mathcal{L}_{\lambda}(\theta, x_{1:n}^{\star}) &:= \int \underbrace{\overleftarrow{p}_{0|t}^{\lambda}(\theta_{0}|\theta)^{1-n} \prod_{j=1}^{n} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star})}_{\text{Product of Gaussian pdfs!}} \,\mathrm{d}\theta_{0} \,. \end{split}$$

Under

$$\overleftarrow{p}_{0|t}(\theta_0|\theta, x_j^{\star}) \approx \mathcal{N}(\theta_0; \mu_t(\theta, x_j^{\star}), \Sigma_t(\theta, x_j^{\star})).$$

$$L_{\lambda}(\theta, x_{1:n}^{\star}) := \int \underbrace{\overleftarrow{p}_{0|t}^{\lambda}(\theta_{0}|\theta)^{1-n} \prod_{j=1}^{n} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star})}_{\text{Product of Gaussian pdfs!}} d\theta_{0} \,.$$

Let $\ell_{\lambda}(\theta, x_{1:n}^{\star})$ be the resulting approximation. Under appropriate conditions, we can calculate (autograd) $\nabla \ell_{\lambda}(\theta, x_{1:n}^{\star}) \approx \nabla L_{\lambda}(\theta, x_{1:n}^{\star})$

Under

$$\overleftarrow{p}_{0|t}(\theta_0|\theta, x_j^{\star}) \approx \mathcal{N}(\theta_0; \mu_t(\theta, x_j^{\star}), \Sigma_t(\theta, x_j^{\star})).$$

$$L_{\lambda}(\theta, x_{1:n}^{\star}) := \int \underbrace{\overleftarrow{p}_{0|t}^{\lambda}(\theta_{0}|\theta)^{1-n} \prod_{j=1}^{n} \overleftarrow{p}_{0|t}(\theta_{0}|\theta, x_{j}^{\star})}_{\text{Product of Gaussian pdfs!}} d\theta_{0}.$$

Let $\ell_{\lambda}(\theta, x_{1:n}^{\star})$ be the resulting approximation. Under appropriate conditions, we can calculate (autograd) $\nabla \ell_{\lambda}(\theta, x_{1:n}^{\star}) \approx \nabla L_{\lambda}(\theta, x_{1:n}^{\star})$

Highly unstable! (i.e, does not work at all)

Lemma (Score approximation $^{\rm 17}$)

We can write

$$\begin{aligned} \nabla_{\theta} \log \overleftarrow{p}_{t}(\theta \mid x_{1:n}^{\star}) &= \Lambda(\theta)^{-1} \sum_{j=1}^{n} \Sigma_{t,j}^{-1}(\theta) \nabla_{\theta} \log \overleftarrow{p}_{t}(\theta \mid x_{j}^{\star}) \\ &+ (1-n)\Lambda(\theta)^{-1} \Sigma_{t,\lambda}^{-1}(\theta) \nabla_{\theta} \log \overleftarrow{p}_{t}^{\lambda}(\theta) + F(\theta, x_{1:n}^{\star}) \,, \end{aligned}$$

and F satisfies

$$abla_{ heta} \Sigma_{t,j}(heta) = 0 \quad and \quad
abla_{ heta} \Sigma_{\lambda,t}(heta) = 0 \Rightarrow F(heta, x_{1:n}^{\star}) = 0$$

$$^{17}\Lambda(heta) = \sum_{j=1}^{n} \Sigma_{t,j}^{-1}(heta) + (1-n)\Sigma_{t,\lambda}^{-1}(heta)$$

Results

Figure: sW distance as a function of $N_{\text{train}} \in [10^3, 3.10^3, 10^4, 3.10^4]$ between the samples obtained by each algorithm and the true tall posterior distribution $p(\theta \mid x_{1,n}^*)$ (for $n \in [1, 8, 14, 22, 30]$). Mean and std over 20 different parameters $\theta^* \sim \lambda(\theta)$.

- Is there a better second order approximation of p_{0|t}? Variational Inference?
- Can we approximate L_{λ} by MCMC (or something else)?
- Link between $p(\theta|x)$ and approximation error?