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Latent variable models

▶ Latent variable model: Yi ∈ Rp is driven by a latent variable
W ∈ Rq:

pθ(Yi ) =

∫
Rq

pθ(Yi ,W )dW

with a parameter θ ∈ Rd and 1 ≤ i ≤ n with n the number of
samples.

▶ PLN with Yi |W ∼ P(exp(W )), W ∼ Np(µ,Σ)

▶ PLN-PCA with Yi |W ∼ P(exp(CW + µ), W ∼ Nq(0, Iq)
▶ Multivariate Binomial, Mixture models ...
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Natural exponential family

We assume that pθ belongs to the natural exponential family and
the dependance in θ is linear:

Wi ∼iid N (0q, Iq), Zi = CWi + µ,

pθ (Yij |Zij) = exp(YijZij − A(Zij)− h(Yij)), 1 ≤ j ≤ p ,

where h and A are real-valued functions with A convex and
differentiable, q << p and θ = (C ,µ).
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Goal and assumptions

▶ Goal: maximize the (non-concave) log-likelihood

argmax
θ

1

n

n∑
i=1

log pθ(Yi ) = argmax
θ

ℓ(θ).

▶ We first assume that θ 7→ log pθ(Yi ) is C1 (condition satisfied
in the Poisson and Binomial case).
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Algorithm

▶ Given a learning rate η > 0 and θ(0) ∈ Rd an initial point, we
recursively define θ(t) via Stochastic Gradient Ascent:

θ(t+1) = θ(t) + ηĝ (t)

where ĝ (t) is a (possibly biased) gradient estimator of
∇ℓ(θ(t)).
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Gradient estimator

We are given a family of law π(·; θ, i) for 1 ≤ i ≤ n and θ ∈ Rd .

▶ At iteration t ≥ 1, an index i(t) ∼ Unif{1, . . . , n} is sampled
and the law

π(t) ≜ π(·; θ(t), i(t))

is selected.

▶ Monte Carlo particles are sampled (Vk)1≤k≤N
iid∼ π(t), with

N ≥ 1 a fixed number of particles.

▶ A self normalized gradient estimator is computed:

ĝ (t) ≜
∑N

k=1 ωk∇θ log pθ(t)(Yi(t),Vk),

ωk =
ρk∑N
ℓ=1 ρℓ

with ρk =
pθ(t)(Yi(t),Vk)

π(t)(Vk)
.
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Gradient formula
Why such a gradient estimator ?

∇ log pθ(Yi ) = EW |Yi

[ hi (W )︷ ︸︸ ︷
∇ log pθ(Yi |W )

]
= EW |Yi

[hi (W )]

= Eπ

[
pθ(V |Yi )

π(V )
hi (V )

]
=

1

pθ(Yi )
Eπ

[
pθ(V ,Yi )

π(V )
hi (V )

]
LLN
≈ 1

pθ(Yi )

1

N

N∑
k=1

pθ(Vk ,Yi )

π(Vk)
hi (Vk)

with Vk ∼ π. The pθ(Yi ) term is unknown and estimated via IS:

pθ(Yi ) = EW [pθ(Yi |W )] = Eπ

[
pθ(Yi |W )

π(W )
p(W )

]
≈ 1

N

N∑
k=1

pθ(Vk ,Yi )

π(Vk)
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Pseudo-code

Algorithm 1: Pseudo code SGIS

Input θ(0) ∈ Rd initial point, T ≥ 1 number of iterations,
η > 0 learning rate, N ≥ 1 number of Monte-Carlo particles.

Output θ(0), . . . , θ(T−1)

for t = 0 . . .T − 1 do
Sample i(t) ∼ Unif{1, . . . , n}
Sample Vk ∼ π(t)(1 ≤ k ≤ N)
Compute self-normalized gradient ĝ (t)

Update θ(t+1) = θ(t) + ηĝ (t)

end

9/19



Convergence guarantees of SGD with biased gradients

Theorem ([Ajalloeian and Stich, 2021])

Let ϵ > 0 and assume ℓ is L−smooth (∇2ℓ bounded by L). If for
all t ≥ 1

MSE (ĝ (t)) = E
[∥∥∥ĝ (t) −∇θℓ

(
θ(t)

)∥∥∥2] < ∞,

T ≥ 1
ϵ2+ξ2

and η is chosen wisely, then the sequence(
θ(t)

)
0≤t≤T−1

satisfies

1

T

T−1∑
t=0

E
[∥∥∥∇θℓ

(
θ(t)

)∥∥∥2] ≤ K (ϵ+ ξ) ,

with ξ is a constant growing with the bias of the estimator.

10/19



Bias control

Theorem ([Agapiou et al., 2017])

For all t ≥ 0 and 1 ≤ i ≤ n, if Eπ(·;θ(t),i)

[
∥∇θ log (pθ(t)(Yi ,V))∥41

]
is finite and the weights pθ(Yi ,·)

π(·;θ(t),i) are bounded almost surely, we

have

MSE (ĝ (t)) = E
[∥∥∥ĝ (t) −∇θℓ

(
θ(t)

)∥∥∥2] = o

(
1

N

)
(1)

and

B(ĝ (t)) =
∥∥∥E [

ĝ (t)
]
−∇θℓ

(
θ(t)

)∥∥∥2 = o

(
1

N

)
. (2)
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Recap
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Choice of π(·; θ, i)
▶ For a proposal g , a reasonable estimate is reached

[Chatterjee and Diaconis, 2018] once

N ≈ eKL(pθ(·,Yi )||g)

so that we wish to take

π⋆(·; θ, i) = argmin
g∈F

KL(pθ(· | Yi )∥g)

▶ Here we take:

F =
{
Nq(m,S) | m ∈ Rq, S ∈ S+

q

}
.

▶ After a few computations, we get

π⋆(·; θ, i) = Nq (E [W |Yi ] ,V [W |Yi ])
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Integrability and boundedness

▶ For the Poisson and Binomial case, the integrability condition
is ensured.

▶ The weights are bounded if π⋆(·) ≥ K exp
(
−∥·∥2

2

)
, which

cannot be ensured.

▶ Solution to ensure boundedness =⇒ mix π⋆ with a
”defensive” proposal with higher variance:

π⋆
α(·, θ, i) = (1− α)π⋆(·, θ, i) + αN (E [W |Yi ] , δIq)

with δ > 1 and 0 < α < 1.
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Recap
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L-smoothness

▶ It cannot be shown that θ 7→ ℓ(θ) is L-smooth.

▶ Moreover, the learning rate η must be set as a function of the
supremum of the bias =⇒ All the bounds must be uniform
on θ.

▶ Solution =⇒ restrict ourselves to θ ∈ X with X a compact
convex subset.

▶ Need to adapt SGD to Projected SGD and the convergence
proof.

▶ [Mai and Johansson, 2021] proves convergence for projected
SGD in a non-convex setting =⇒ only the bias must be
added.
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Conclusion

▶ Scaling well with the number of samples n thanks to SGD.

▶ Relatively high number of dimensions can be selected thanks
to low-dimensional sampling.

▶ Still need to adapt to projected gradient to get theoretical
guarantees.
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