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Prologue: Numerical integration

The goal is to approximate

N
/ fd,u ~ Z W,'f(X,').
i=1

» How to choose the nodes x;?
» How to choose the weights w;?

Monte Carlo integration (importance sampling, MCMC, etc.)

» Choose the nodes randomly, and the weights w; = w;(xq, . .., xn).

» Typical error is

E

/ fdp — i Wif(xi)‘| 2 ~

-
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Prologue: Repulsive point processes

Go to CLT
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Plan

Monte Carlo with DPPs

DPPs lead to tight rates in RKHSs

Repelled point processes
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Plan

Monte Carlo with DPPs
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Projection DPPs

> Let (k)k=o,...n—1 be an orthonormal sequence in L2(p).
> Let K(x,y) = Y40 or(x)er(y)-
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Projection DPPs

> Let (k)k=o,...n—1 be an orthonormal sequence in L2(p).
> Let K(x,y) = Y40 or(x)er(y)-

Definition (Hough, Krishnapur, Peres, and Virag, 2006)

X ={x1,...,xn} is the DPP with kernel K and reference measure 1 if

N

1
Xiyeoey XN ~ mdet {K(X,-, Xg)} o dp(x) . dp(x).
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What projection DPP samples look like
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Figure: Left:i.i.d., Right: orthogonal polynomial ensemble (DPP)
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A first Monte Carlo result

Theorem (Bardenet and Hardy, 2020)

Let p(dx) = w(x)dx with w separable, ¢, positive on the open set

, and satisfying a technical regularity assumption. Let € > 0. If
X1, ---,Xn Stands for the associated multivariate OP Ensemble, then for
every f € vanishing outside [-1+¢,1 — ]9,

N
VN ( > e [ f(X)u(dX)> e N2,

i=1

where
A - “Fw ,
Qf-,w':§ Z (k1++kd) W (kl,...,kd),
ki,...,kg=0 “eq

and w@%(x) = 7=9(1 — x?)71/2.
» With Thibaut Lemoine, we have a CLT with rate V' N2/ (soon).
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Fewer assumptions on p with importance sampling

Theorem (Bardenet and Hardy, 2020)

Let pu(dx) = w(x)dx with w €* on (—1,1)?. Consider a measure q(x)dx
satisfying the assumptions of the previous theorem, let Ky(x,y) be the
corresponding kernel, and xi, . ..,xy the associated multivariate OP
Ensemble. Then, for every f as before,

N1+1/d<ZKx,,x,)q: /f (dx)) ~——+J\/(O Q).

where Q2

fw s unchanged.
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Plan

DPPs lead to tight rates in RKHSs
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RKHSs are spaces of smooth functions with a kernel

» Consider the RKHS F with kernel k, i.e. the completion of
M
{Za;k(x,-7~),/\/l eN,ag,...,an € R xq,...,xpm € Rd}.
i=1

for the inner product defined by (k(x,-), k(y,))r := k(x,y).
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RKHSs are spaces of smooth functions with a kernel

» Consider the RKHS F with kernel k, i.e. the completion of
M
{Za;k(x,-7~),/\/l eN,ag,...,an € R xq,...,xpm € Rd}.
i=1
for the inner product defined by (k(x,-), k(y,))r := k(x,y).

» For f € Fand x € X, f(x) = (f, k(x,-)).
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RKHSs are spaces of smooth functions with a kernel

» Consider the RKHS F with kernel k, i.e. the completion of

M
{Za;k(x,-7~),/\/l eN,ay,...,an €ER, x1,...,xp ERd}.
i=1
for the inner product defined by (k(x,-), k(y,))r := k(x,y).
» For f € Fand x € X, f(x) = (f, k(x,")).

» Under general assumptions, F C L2(du), is dense, there is an ON
basis (e,) of L2(dp) and o, — 0 such that, pointwise,

k(x,y) = Zanen(x)en(y).

n>1
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RKHSs are spaces of smooth functions with a kernel

» Consider the RKHS F with kernel k, i.e. the completion of

M
{Za;k(x,-7~),/\/l eN,ay,...,an €ER, x1,...,xp ERd}.
i=1
for the inner product defined by (k(x,-), k(y,))r := k(x,y).
» For f € Fand x € X, f(x) = (f, k(x,")).

» Under general assumptions, F C L2(du), is dense, there is an ON
basis (e,) of L2(dp) and o, — 0 such that, pointwise,

k(x,y) = Zanen(x)en(y).

n>1

> In that case, f € F if and only if >_ o, ![(f,e,)|? converges.
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Quadrature and approximation in an RKHS

> Let f € F, g € L?(du) then

N
|/ fgdp — Z w;f(x;)

i=1

N
< Hf“fHNg*Zwik(xf")Hf’ (1)

where
g = / g()k(x, )du(x)

is the mean element of g.
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Quadrature and approximation in an RKHS

> Let f € F, g € L?(du) then

N
|/ fgdp — Z w;f(x;)

i=1

N
< Hf“fHMg*Zwik(xf")Hf’ (1)

where
g = / g()k(x, )du(x)

is the mean element of g.

» Once the nodes xi, ..., xy are known, minimizing the RHS of (1) in
w boils down to inverting the N x N Gram matrix ((k(x;, X;)))-
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Volume sampling and tight rates

Volume sampling

> Let xq,...,xy ~ Z tdet[k(x;, x;)] dp(x1) . .. dp(xn)
» Solve the linear program for the weights wy, ..., wy.
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Volume sampling and tight rates

Volume sampling

> Let xq,...,xy ~ Z tdet[k(x;, x;)] dp(x1) . .. dp(xn)
» Solve the linear program for the weights wy, ..., wy.

Theorem (Belhadji, Bardenet, and Chainais, 2020)

=
N

Assume again ) |(g,en)|> < 1. Then

N
2
E|lug — Z wik(x;, )H]E <on(1+Bn),
fi=il

where By = Mrgln [(N—M+1)on]™ n;/,lfm-

> Pinkus, 2012 shows that inf sup inf [lss —y[3 = owin.
dnn%’ N HgHLZ(N
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Extensions and variants

» For f € F C L?(u), we investigate guarantees on

in (Belhadji, Bardenet, and Chainais, 2023, preprint).

» In (Rouault, Bardenet, and Maida, 2024), we investigate the
Coulomb gas with interaction potential k and confining potential V/,

1 By Bn 5~ ,
d]P)"{an (Xn) = zVv e ant 2y K0020) =5 2 Vi) dxg ... dxg,,
n,Bn

In particular, we prove that for 8, = n® and r < 1/4/n,

PYs, <sup /fdun—/fduv

fEB]:

2
> r2> < exp (—ul‘;’?nrz) . (2
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Plan

Repelled point processes
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The repelled Poisson point process

le—1 Poisson
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The repelled Poisson point process

1e—1 Repelled using (F;)
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Coulomb repulsion leads to variance reduction

» Let P C RY be a homogeneous Poisson point process.

» For x in R? and a collection C of points in R9, consider

Fe)= > X7y

—yd’
secu X =l
» Consider the repelled point process

N.P £ {x+¢eFp(x), x€P}

Theorem (Hawat, Bardenet, and Lachieze-Rey, 2023)

» [1.P is well-defined and has the same intensity A as P.
» For f compactly supported in S C R, there is an € > 0 such that

1 1
5 > f(x) 3 > f(x)].

xeSNn.P xESNP

Var < Var
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The repelled Ginibre point process’

19/19



The repelled Ginibre point process’
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Wrapping up

» Volume sampling yields tight MSE bounds in RKHSs.234

Take-home message

» Repulsive point processes yield fast Monte Carlo integration.
» DPPs tie analytic assumptions with node design.

» PhD and postdoc applications welcome! remi.bardenet@gmail.com

zBeIhadji, Bardenet, and Chainais, 2019.
3Belhadiji, Bardenet, and Chainais, 2020.
4Belhadji, Bardenet, and Chainais, 2023.
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github.com/guilgautier/DPPy

Wrapping up

» Volume sampling yields tight MSE bounds in RKHSs.234

» DPP sampling is an active research topic. Check out our Python
toolbox DPPy.®
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github.com/guilgautier/DPPy

Wrapping up

» Volume sampling yields tight MSE bounds in RKHSs.234

» DPP sampling is an active research topic. Check out our Python
toolbox DPPy.®

» Coulomb repulsion yields variance reduction at a lower cost, and is
potentially widely applicable.®

Take-home message

» Repulsive point processes yield fast Monte Carlo integration.
» DPPs tie analytic assumptions with node design.

» PhD and postdoc applications welcome! remi.bardenet@gmail.com

zBeIhadji, Bardenet, and Chainais, 2019.

3Belhadiji, Bardenet, and Chainais, 2020.

4Be|hadji, Bardenet, and Chainais, 2023.

®Gautier, Bardenet, Polito, and Valko, 2019, github.com/guilgautier/DPPy
SHawat, Bardenet, and Lachiéze-Rey, 2023.
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