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Prologue: Numerical integration

The goal is to approximate

∫
f dµ ≈

N∑
i=1

wi f (xi ).

▶ How to choose the nodes xi?

▶ How to choose the weights wi?

Monte Carlo integration (importance sampling, MCMC, etc.)

▶ Choose the nodes randomly, and the weights wi = wi (x1, . . . , xN).

▶ Typical error is √√√√E

[∫
f dµ−

N∑
i=1

wi f (xi )

]2
∼ 1√

N
.
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Prologue: Repulsive point processes
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Plan

Monte Carlo with DPPs

DPPs lead to tight rates in RKHSs

Repelled point processes
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Projection DPPs

▶ Let (φk)k=0,...,N−1 be an orthonormal sequence in L2(µ).

▶ Let K(x , y) =
∑N−1

k=0 φk(x)φk(y).

Definition (Hough, Krishnapur, Peres, and Virág, 2006)

X = {x1, . . . , xN} is the DPP with kernel K and reference measure µ if

x1, . . . , xN ∼ 1

N!
det
[
K(xi , xℓ)

]N
i,ℓ=1

dµ(x1) . . . dµ(xN).
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What projection DPP samples look like
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Figure: Left:i.i.d., Right: orthogonal polynomial ensemble (DPP)
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A first Monte Carlo result

Theorem (Bardenet and Hardy, 2020)

Let µ(dx) = ω(x)dx with ω separable, C 1, positive on the open set
(−1, 1)d , and satisfying a technical regularity assumption. Let ε > 0. If
x1, . . . , xN stands for the associated multivariate OP Ensemble, then for
every f C 1 vanishing outside [−1 + ε, 1− ε]d ,

√
N1+1/d

(
N∑
i=1

f (xi )

K(xi , xi )
−
∫

f (x)µ(dx)

)
law−−−−→

N→∞
N
(
0,Ω2

f ,ω

)
,

where

Ω2
f ,ω =

1

2

∞∑
k1,...,kd=0

(k1 + · · ·+ kd)

(̂
f ω

ω⊗d
eq

)
(k1, . . . , kd)

2,

and ω⊗d
eq (x) = π−d(1− x2)−1/2.

▶ With Thibaut Lemoine, we have a CLT with rate
√
N1+2/d (soon).
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Fewer assumptions on µ with importance sampling

Theorem (Bardenet and Hardy, 2020)

Let µ(dx) = ω(x)dx with ω C 1 on (−1, 1)d . Consider a measure q(x)dx
satisfying the assumptions of the previous theorem, let KN(x , y) be the
corresponding kernel, and x1, . . . , xN the associated multivariate OP
Ensemble. Then, for every f as before,

√
N1+1/d

(
N∑
i=1

f (xi )

K(xi , xi )

ω(xi )

q(xi )
−
∫

f (x)µ(dx)

)
law−−−−→

N→∞
N
(
0,Ω2

f ,ω

)
,

where Ω2
f ,ω is unchanged.
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Monte Carlo with DPPs
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RKHSs are spaces of smooth functions with a kernel

▶ Consider the RKHS F with kernel k , i.e. the completion of{
M∑
i=1

αik(xi , ·),M ∈ N, α1, . . . , αn ∈ R, x1, . . . , xM ∈ Rd

}
.

for the inner product defined by ⟨k(x , ·), k(y , ·)⟩F := k(x , y).

▶ For f ∈ F and x ∈ X , f (x) = ⟨f , k(x , ·)⟩.

▶ Under general assumptions, F ⊂ L2(dµ), is dense, there is an ON
basis (en) of L

2(dµ) and σn → 0 such that, pointwise,

k(x , y) =
∑
n⩾1

σnen(x)en(y).

▶ In that case, f ∈ F if and only if
∑

n σ
−1
n |⟨f , en⟩|2 converges.
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Quadrature and approximation in an RKHS

▶ Let f ∈ F , g ∈ L2(dµ) then∣∣∣∣∣
∫

fgdµ−
N∑
i=1

wi f (xi )

∣∣∣∣∣ ⩽ ∥f ∥F
∥∥µg −

N∑
i=1

wik(xi , .)
∥∥
F , (1)

where

µg =

∫
g(x)k(x , .)dµ(x)

is the mean element of g .

▶ Once the nodes x1, . . . , xN are known, minimizing the RHS of (1) in
w boils down to inverting the N × N Gram matrix ((k(xi , xj))).
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Volume sampling and tight rates

Volume sampling

▶ Let x1, . . . , xN ∼ Z−1 det[k(xi , xj)]dµ(x1) . . . dµ(xN)

▶ Solve the linear program for the weights w1, . . . ,wN .

Theorem (Belhadji, Bardenet, and Chainais, 2020)

Assume again
∑N

n=1 |⟨g , en⟩|2 ⩽ 1. Then

E
∥∥∥µg −

N∑
i=1

wik(xi , ·)
∥∥∥2
F
⩽ σN (1 + βN) ,

where βN = min
M∈[2:N]

[(N −M + 1)σN ]
−1
∑
m⩾M

σm.

▶ Pinkus, 2012 shows that inf
Y⊂F

dimY=N

sup
∥g∥L2(µ)⩽1

inf
y∈Y

∥µg − y∥2F = σN+1.

Go to repelled PPs
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Extensions and variants

▶ For f ∈ F ⊂ L2(µ), we investigate guarantees on

E∥f − f̂ ∥2L2(µ)

in (Belhadji, Bardenet, and Chainais, 2023, preprint).

▶ In (Rouault, Bardenet, and Maida, 2024), we investigate the
Coulomb gas with interaction potential k and confining potential V ,

dPV
n,βn

(Xn) =
1

ZV
n,βn

e−
βn
2n2

∑
i ̸=j K(xi ,xj )− βn

n

∑n
i=1 V (xi ) dx1 . . . dxn,

In particular, we prove that for βn = n2 and r ⩽ 1/
√
n,

PV
n,βn

(
sup
f∈BF

∣∣∣∣∫ f dµn −
∫

f dµV

∣∣∣∣2 > r2

)
⩽ exp

(
−u1βnr

2
)
. (2)
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The repelled Poisson point process
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The repelled Poisson point process
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Coulomb repulsion leads to variance reduction

▶ Let P ⊂ Rd be a homogeneous Poisson point process.

▶ For x in Rd and a collection C of points in Rd , consider

FC (x) =
∑

y∈C ,y ̸=x

x − y

∥x − y∥d
,

▶ Consider the repelled point process

ΠεP ≜ {x + εFP(x), x ∈ P}.

Theorem (Hawat, Bardenet, and Lachièze-Rey, 2023)

▶ ΠεP is well-defined and has the same intensity λ as P.

▶ For f compactly supported in S ⊂ Rd , there is an ε > 0 such that

Var

[
1

λ

∑
x∈S∩ΠεP

f (x)

]
< Var

[
1

λ

∑
x∈S∩P

f (x)

]
.
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The repelled Ginibre point process1

Figure: test

1Hawat, Bardenet, and Lachièze-Rey, 2023.
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The repelled Ginibre point process1
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Wrapping up

▶ Volume sampling yields tight MSE bounds in RKHSs.234

▶ DPP sampling is an active research topic. Check out our Python
toolbox DPPy.5

▶ Coulomb repulsion yields variance reduction at a lower cost, and is
potentially widely applicable.6

Take-home message

▶ Repulsive point processes yield fast Monte Carlo integration.

▶ DPPs tie analytic assumptions with node design.

▶ PhD and postdoc applications welcome! remi.bardenet@gmail.com

2Belhadji, Bardenet, and Chainais, 2019.
3Belhadji, Bardenet, and Chainais, 2020.
4Belhadji, Bardenet, and Chainais, 2023.
5Gautier, Bardenet, Polito, and Valko, 2019, github.com/guilgautier/DPPy.
6Hawat, Bardenet, and Lachièze-Rey, 2023.
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20/19

github.com/guilgautier/DPPy


Wrapping up

▶ Volume sampling yields tight MSE bounds in RKHSs.234

▶ DPP sampling is an active research topic. Check out our Python
toolbox DPPy.5

▶ Coulomb repulsion yields variance reduction at a lower cost, and is
potentially widely applicable.6

Take-home message

▶ Repulsive point processes yield fast Monte Carlo integration.

▶ DPPs tie analytic assumptions with node design.

▶ PhD and postdoc applications welcome! remi.bardenet@gmail.com

2Belhadji, Bardenet, and Chainais, 2019.
3Belhadji, Bardenet, and Chainais, 2020.
4Belhadji, Bardenet, and Chainais, 2023.
5Gautier, Bardenet, Polito, and Valko, 2019, github.com/guilgautier/DPPy.
6Hawat, Bardenet, and Lachièze-Rey, 2023.
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