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Sociology

• Nodes: individuals or
organizations

• Edges: advice, competition, ...

• Examples of objectives:
characterizing the role of
individuals in the network, link
their role to covariates
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Ecology

• Nodes: species (plants or
animals)

• Edges: predation, pollination,
competition...

• Examples of objectives :
characterizing the structure of the
network because it conditions
their robustness to the
disappearance of species.
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Biology

• Nodes: genes, metabolites,
proteines,

• Edges: Regulation,
co-expression, reactions,

• Examples of objectives:
Determine groups of genes
co-expressed together under
some stresses.
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Networks

Graph G = (V,E,W) with

• a set of nodes V = {1, . . . ,N},

• a set of edges E ⊂ V2, particular cases: (un)directed, with(out) loop,...

• additional information on edges, w ∈ W containing weights (number of
interactions, positive or negative interaction,...)

Attributes of:

• nodes, for any i ∈ V, Xi attributes of a node (taxon, gender, age, social
group,...), or information derived from the edges: degree of i,

• edges, for any e = (i, j) ∈ E, the edges may have an attribute coming
from the two nodes (difference of ages, same gender...,) or particular
attribute (date of interaction,...)

• network, global attribute derived from the edges mean connectivity,
diameter, or an associated variable.

7



Network encoding/representation

Simple network

1

2

3

4

Adjacency matrix:

A =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0


edge list:
E={(1,2),(2,3),(1,4),(2,4)}

Bipartite network
R1 R2 R3

C1 C2 C3 C4 C5

Incidence matrix:

B =

 1 1 1 1 0
0 0 1 1 1
0 0 0 0 1


edge list:
E = {(R1,C1), (R1,C2), (R1,C3)...}
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Semi-supervised learning on nodes

Data: G = (V,E) and labels in {1, . . . ,K} for a subset of V,

• learn f : i ∈ V 7→ {1, . . . ,K},
• leverage the network structure E.
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Clustering of nodes in a graph / Embedding

Data: a graph G = (V,E).

Goal:

• Partition on V.

• Embedding: latent representation of nodes in Rd: f : i ∈ V 7→ Rd.
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Classification of graphs or regression on graphs

Data:

( , y1), , y2), , y3), , y4), . . .

Goal: learn f : G = (V,E) 7→ y ∈ {1, . . . ,K} or f : G = (V,E) 7→ y ∈ R.
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Clustering of graphs / Embeddings

Data:

( ), ), ), ), . . .

Goal: learn a partition of graphs , learn an embedding:

x

y
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Predict of dyads, missing links

Data: a graph G with missing or incomplete data.
missing data

1

2

3

4

Adjacency matrix:

A =


0 NA NA 1

NA 0 1 NA

NA 1 0 0
1 NA 0 0



incomplete data

1

2

3

4

Adjacency matrix:

A =


0 1 NA NA

1 0 1 1
NA 1 0 NA

NA 1 NA 0


Goal: Predict NA to {0, 1} or predict most likely existing links.
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Models with latent variables

Review: [Matias and Robin, 2014]

• Z = (Z1, . . . , ZN) independent latent variables in {1, . . . ,K} or in Rd,

• Yij|Zi, Zj
ind∼ F(αZi,Zj) for all dyads (i, j).

• can include covariates: Yij|Zi, Zj
ind∼ F(αZi,Zj , xi,j).

• e.g. Yij|Zi, Zj
ind∼ b

(
1/
(
1 + exp(−αZi,Zj + β⊤xi,j)

))
.

Two classical families:

• if Zs are categorical → Stochastic Block Models
[Nowicki and Snijders, 2001],

• if Zs are in a continuous space → Latent space models
[Peter D Hoff and Handcock, 2002]
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Stochastic Block Model : illustration

A1 A2

A3

α••

B1

B2

B3

B4

B5

α••

C1

C2

α••

α••

α••

α••

Parameters
Let N nodes divided into 3 clusters

• {•, •, •} clusters

• π• = P(i ∈ •), i = 1, . . . ,N

• α•• = P(i ↔ j|i ∈ •, j ∈ •)

Y ∼ SBMN(Q,π,α) .
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Simulations under the SBM

α =

 0.70 0.09 0.09
0.09 0.70 0.09
0.09 0.09 0.70



α =


0.70 0.70 0.70 0.70
0.70 0.70 0.70 0.09
0.70 0.70 0.09 0.09
0.70 0.09 0.09 0.09



α =


0.09 0.70 0.09 0.09
0.70 0.09 0.09 0.09
0.09 0.09 0.09 0.70
0.09 0.09 0.70 0.09


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Latent space model

• ∀i ∈ {1, . . . ,N}, Zi
ind∼ MixtureN ((µk)k, (Σk)k),

• ∀(i, j) ,Yij|Zi, Zj
ind∼ b(exp(−∥Zi − Zj∥/σ2)).
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(Generalised) random dot product graph

Alternative to the distance between latent positions, the dot product can be
used:

∀(i, j), Yij|Zi, Zj
ind∼ b(Zi · Zj = Z⊤

i Zj).

[Rubin-Delanchy et al., 2022] proposed a generalisation:

∀(i, j), Yij|Zi, Zj
ind∼ b(ZiIp,qZj)

with

Ip,q

[
Ip 0
0 −Iq

]
.
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Laplacian of a graph

For G = (V,E) an undirected graph s.t. V = {1, . . . ,N} and A the
corresponding adjacency matrix.

• Degree of a vertex/node: di =
∑

j Aij,

• Unnormalized Laplacian: L = D − A with D = diag(d1, . . . , dN),

Properties:

• for x ∈ Rn, x⊤Lx = 1
2

∑N
j Aij(xi − xj)

2,

• L is symmetric and positive definite,

• the smallest eigenvalue is 0 and associated with the vector 1,

• the order of multiplicity of 0 is the number of connected components.

[Von Luxburg, 2007]
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Normalized Laplacians:

Lsym = D−1/2LD−1/2 = IN − D−1/2AD−1/2

Lrw = D−1L = IN − D−1A

Properties:

• for x ∈ Rn, x⊤Lsymx = 1
2

∑N
j Aij(xi/

√
di − xj/

√
dj)

2,

• Lsym and Lrw are symmetric and positive definite,

• the smallest eigenvalue is 0,

• the order of multiplicity of 0 is the number of connected components.
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Spectral Clustering:

Input: Adjacency Matrix A ∈ RN×N , number k of clusters to construct.

• Compute the unnormalized Laplacian L.

• Compute the first k eigenvectors u1, . . . , uk of L.

• Let U ∈ RN×k be the matrix containing the vectors u1, . . . , uk as columns.

• For i = 1, . . . ,N, let zi ∈ Rk be the vector corresponding to the i-th row of
U.

• Cluster the points (zi)i=1,...,N in Rk with the k-means algorithm into
clusters C1, . . . ,Ck.
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Random walks point of view

Transition from vertex vi to vertex vj given by pij :=
Aij
di

.

Transition matrix:

P = (pij)i,j=1,...,n, P = D−1W.

Stationary distribution: if G is connected, unique stationary distribution
π = (π1, . . . , πn)

T with πi =
di

vol(V)
.

Relation with Laplacian: Lrw = I − P ⇒ same eigenvectors.

Node2vec: proposes an embedding from random walks on graph
[Grover and Leskovec, 2016].
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Diffusion point of view

Heat equation on graph:

• S given subset of V with fixed temperature,

• heat exchanges according to (for i ̸∈ S):

dTi

dt
=

n∑
i

Aij(Tj − Ti) = −(LT)i .

• Equilibrium: Laplace equation when (LT)i = 0 or with RW Ti = (PT)i.

[Bonald and De Lara, 2023] relies on this to semi-supervised the graph.
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Convolution on graphs

• particular structure,

• isomorphism of graphs up to relabelling the nodes,

• large graphs but sparse,

• convolution on graph, convolution on images (images can be seen as
graph with fixed number of neighbors)

Convolution with neighbors: x features on nodes:

hi =
∑

j∈N (i)

xj

N (i) is the set of neighbors of node i.
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Polynomial filters

• Polynomial

pw(L) = w0 + w1L + w2L2 + . . .+ wdLd =

d∑
r=0

wrLr.

• Convolution of node feature x:

h = pw(L)x.

• if pw(L) = 1, h = pw(L)x = w0Ix = x,

• if pw(L) = L, hi = (Lx)i =
∑

j(Dij − Aij)xj = Dixi −
∑

j∈Ni
xj,

• distG(i, j) > r =⇒ Lr
vu = 0,

• hi = (pw(L)x)i = (pw(L))ix =
∑d

r=0 wr(Lrx)i =
∑d

r=0 wr
∑

j Lr
ijxj =∑d

r=0 wr
∑

j,distG(j,i)≤r Lr
ijxj.

• independent of the ordering of the node.

[Defferrard et al., 2016]
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Convolution with polynomial filters

If we have K polynomial filters pw(k)(L) with w(k) trainable parameters.

• h(0) = x,
• iterate from k = 1, . . .

• compute p(k) = pw(k) (L),
• Matrix computation: g(k) = p(k) · h(k−1),
• non linear function: h(k) = σ(g(k)).

If we use pw(k)(L) = L:

•
hi = (Lx)i =

∑
j

(Dij − Aij)xj = Dixi −
∑
j∈Ni

xj

• we aggregate over immediate neighbors,
• and we combine with the node feature,
• the aggregation is node-order equivariant ⇒ overall convolution is

node-order equivariant,
• convolutions can be thought of as ‘message-passing’ between adjacent

nodes,
• repeating 1-hop localized convolutions K times makes convolution

effective K hops away.
30



convolutional layer
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Graph Convolution Networks

[Kipf and Welling, 2016]

h(ℓ+1)
i = σ

(
W(ℓ+1)

∑
j∈N (i)∪{i}

1
ci,j

· x(ℓ)
j

)
Importance of normalization ci,j.

Matrix form
H(l+1) = σ

(
D̃−1/2ÃD̃−1/2H(l)W(l)

)
with

• W(l) a matrix of trainable parameters,

• Ã = A + I,

• D the diagonal matrix of degrees of Ã.

first-order approximation of localized spectral filters proposed in
[Defferrard et al., 2016]
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Importance of normalization

Different choices:

• No normalization Ã
• hl+1

i =
∑

j,j∈N (i) Aijhl
j,

• Eigenvalue of Ã larger than 1 ⇒ exploding largest eigenvalue when stacking
layers,

• row normalization Arow = D−1A,
• hl+1

i =
∑

j,j∈N (i) Aij
hl

j
di

• largest eigenvalue is 1 but not taken into account connectivity of neighbors,

• col normalization Acol = AD−1

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j

dj

• largest eigenvalue is 1 but put too much weight on well connected nodes,

• Naive normalization Anaive = D−1AD−1

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j

djdi

• largest eigenvalue is < 1 and vanishes when stacking layers,

• symmetric normalization Asym = D−1/2AD−1/2

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j√

djdi

• largest eigenvalue is 1, combine row and col normalization.
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Graph Convolutional Network

1

3

2

X
1
=(0, 1) X

2
=(-2, 1)

X
3
=(1, 1)

1

3

2

AX
1
=(-1,3) AX

2
=(-2, 2)

AX
3
=(1, 2)

1

3

2

AX
1
W=(7) AX

2
W=(2)

AX
3
W=(8)

Ã =

1 1 1
1 1 0
1 0 1

 ,X =

 0 1
−2 1
1 1

 ,W =

(
2
3

)
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Other kinds of GNN

• Graph Convolution Networks as we have seen,

• Graph Attention Networks (GAT) [Casanova et al., 2018],

• hl
i = σ

(∑
j∈N (i) α

l(i, j)Whl−1
j

)
,

• αl(i, j) is the attention function,
• αl(i, j) = softmax

(
σ′(a⊤ · (Whi,Whj)

))
.

• Graph SAGE (SAmple and agGrEgate) [Hamilton et al., 2017],
• hl

N (i) = AGGREGATEk({hl−1
j , j ∈ N (i)}),

• hl
i = σ(W l · CONCAT(hl−1

i , hl
N (i)),

• hl
i = hl

i/∥hl
i∥.

• Graph Isomorphism Network (GIN) [Xu et al., 2018].

see https://distill.pub/2021/understanding-gnns/
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Semi-supervised learning on nodes

Data: G = (V,E) a network with N nodes, m% of nodes with an observed
labels in {1, . . . ,Q}, V set of edges is known, (features on nodes X).

Goal: Classify nodes without labels.

Architecture:

• X can be a vector of the degrees of nodes, a number for each node, or
an identity matrix...

• 2 or 3 GCN layers with given numbers of features,

• Last layer is a linear transformation in a K dimension space : for each p
point from the dataset (hL

p1, . . . , hL
pK).

Loss: Cross entropy:

loss(x, y) =
1

ntrain

ntrain∑
p=1

log

(
exp(hL

p,yp)∑K
k=1 exp(h

L
p,k)

)
.
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Graph clustering

Data: G1, . . .Gn and labels on graphs.

Goal: Learn the Classification function f : G 7→ {1, . . . ,K}

Architecture:

and batches

Average over nodes in the same graph in order to have a layer at the graph
level and use a classifier.

Loss: cross entropy.
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Link Prediction

Data: G = (V,E), V is incomplete.
Goal: Find edges that are likely to exist for a given set of non-observed
edges...

Architecture: GCN layers with V as the set of edges... Last layer uses a
“decoder” for dyads:

g(Dist(hl
i, hl

j)) or hl⊤
i hl

j

Loss: Cross entropy computed on a set of trainable DYADS (usually half of
edges and half of non edges).

Remark: Autoencoder directly derived from link prediction task by using hl
i as

the embedding.
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GVAE

Data: G = (V,E).

Goal: Find an embedding of nodes in a small dimension (Euclidean) space
as a conditional distribution.

Architecture: GCN layers to embed the nodes in the parameters of a
Gaussian distribution, simulation under the distribution and a last decoder
layer to predict edges.

(Xi)i → (mi, si)i → (Zi = mi + si · N (0, 1))i → (Z⊤
i Zj)ij

Loss: Cross entropy with a KL on the set of trainable DYADS:

Eq(Z|X,A)
(
log p(Atrain|Z)

)
− KL(q(Z|X,A)||p(Z))

where p(Z) is a prior distribution chosen as N (0, 1).
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Some Examples

Communities
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Some Examples

Nestedness
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Some Examples

Community and antagonism
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Many resources online

• introduction to GNN https://distill.pub/2021/gnn-intro/,

• convolution on graphs
https://distill.pub/2021/understanding-gnns/,

• google colabs for pytorch geometric https://pytorch-geometric.
readthedocs.io/en/latest/get_started/colabs.html.
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