Predicting ammonia volatilization from field applied manure using Machine Learning

Armand Favrot - INRAE

David Makowski - INRAE

Sophie Génermont - INRAE

Céline Decuq - INRAE

Jean-Marc Gilliot - INRAE

March 26, 2024

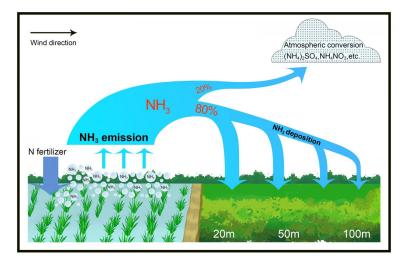
• Ammonia is an inorganic chemical compound of nitrogen and hydrogen : **NH3**

- Ammonia is an inorganic chemical compound of nitrogen and hydrogen : **NH3**
- It poses environmental issues
 - Euthropication, acidification
 - Atmospheric pollutant : precursor of fine particles (PM2.5, PM10)

- Ammonia is an inorganic chemical compound of nitrogen and hydrogen : **NH3**
- It poses environmental issues
 - Euthropication, acidification
 - Atmospheric pollutant : precursor of fine particles (PM2.5, PM10)
- It originates from agriculture at 94%
 - field fertilization
 - animal husbandry

- Ammonia is an inorganic chemical compound of nitrogen and hydrogen : **NH3**
- It poses environmental issues
 - Euthropication, acidification
 - Atmospheric pollutant : precursor of fine particles (PM2.5, PM10)
- It originates from agriculture at 94%
 - field fertilization
 - animal husbandry
- Ammonia emissions represent an economic loss for farmers

- Ammonia is an inorganic chemical compound of nitrogen and hydrogen : **NH3**
- It poses environmental issues
 - Euthropication, acidification
 - Atmospheric pollutant : precursor of fine particles (PM2.5, PM10)
- It originates from agriculture at 94%
 - field fertilization
 - animal husbandry
- Ammonia emissions represent an economic loss for farmers
- **Objective** : build a model to predict ammonia emission from field-applied fertilizers



• Very little used to predict ammonia volatilization

- Very little used to predict ammonia volatilization
- Handles complex patterns, takes non-linearity into account

- Very little used to predict ammonia volatilization
- Handles complex patterns, takes non-linearity into account
- Non parametric approach : no hypothesis on the form of the problem

- Very little used to predict ammonia volatilization
- Handles complex patterns, takes non-linearity into account
- Non parametric approach : no hypothesis on the form of the problem
- High predictive accuracy

- Very little used to predict ammonia volatilization
- Handles complex patterns, takes non-linearity into account
- Non parametric approach : no hypothesis on the form of the problem
- High predictive accuracy

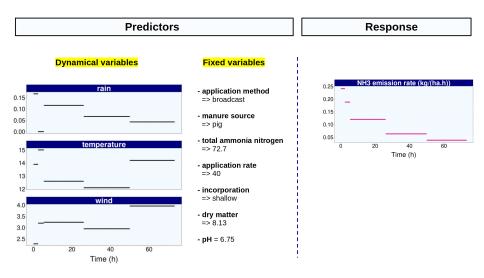
Other approaches : Empirical / statistical models, mechanistic models, Semi-empirical models

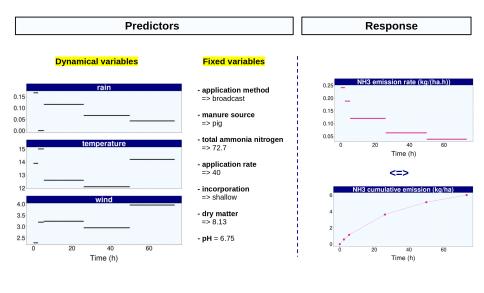
Data description : ALFAM2

id	t.start	t.end	j.NH3	temp	wind	rain	man.source	app.mthd	dose	TAN	pН	man.dm	incorp	t.incorp
182	0.00	4.00	1.79	8.20	8.10	0.00	pig	bc	31.8	122.11	7.35	3.7	none	0
182	4.00	21.00	0.07	4.45	3.98	0.00	pig	bc	31.8	122.11	7.35	3.7	none	0
182	21.00	44.75	0.15	7.22	6.57	0.01	pig	bc	31.8	122.11	7.35	3.7	none	0
183	0.00	6.00	0.58	13.77	4.31	0.00	pig	bsth	21.6	58.32	7.71	2.8	none	0
183	6.00	20.50	0.14	9.88	3.38	0.00	pig	bsth	21.6	58.32	7.71	2.8	none	0
183	20.50	45.20	0.00	10.64	3.51	0.00	pig	bsth	21.6	58.32	7.71	2.8	none	0
184	0.00	5.15	1.61	11.15	8.27	0.00	pig	bc	24.9	78.68	7.61	3.4	none	0
184	5.15	20.15	0.08	8.43	6.23	0.00	pig	bc	24.9	78.68	7.61	3.4	none	0
184	20.15	45.15	0.07	10.00	7.30	0.00	pig	bc	24.9	78.68	7.61	3.4	none	0

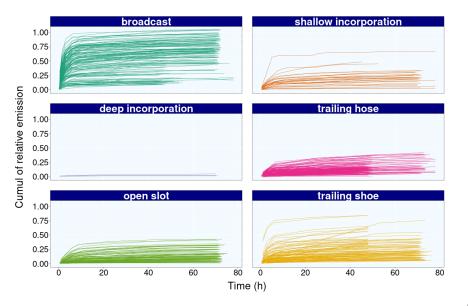
• j.NH3, temp, wind, rain : dynamic variables

 man.source, app.mthd, dose, TAN, pH, man.dm, incorp, t.incorp : fixed variables



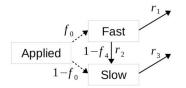


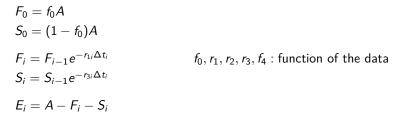
Data description : ALFAM2



A semi-empirical model : alfam2

Hafner et al - 2019 - A flexible semi-empirical model for estimating ammonia volatilization from field-applied slurry





 \Rightarrow Calibrated and evaluated using two different subsets of the <code>ALFAM2</code> database

A semi-empirical model

Table 3

Model performance statistics based on parameter values given in Table 2 applied to both data subsets.

	Response	Pearson's r	ME ^a	MAE ^b	MBE ^c		
Test dataset 🔶	Evaluation subset						
	Flux (kg ha ⁻¹ h ⁻¹) ($n = 418$ intervals)	0.832	0.663	0.433	-0.099		
	72 h cum. emission (kg ha ⁻¹) ($n = 48$	0.861	0.620	5.63	-2.77		
	plots)						
	72 h relative cum. emission (frac.	0.794	0.582	0.114	-0.0435		
	applied TAN) ($n = 48$ plots)						
Training dataset							
	Flux (kg ha ⁻¹ h ⁻¹) ($n = 5371$ intervals)	0.844	0.686	0.462	-0.194		
	72 h cum. emission (kg ha ⁻¹) ($n = 490$ plots)	0.823	0.610	6.63	-2.94		
	72 h relative cum. emission (frac. applied TAN) ($n = 490$ plots)	0.802	0.530	0.118	-0.054		

A semi-empirical model

|--|

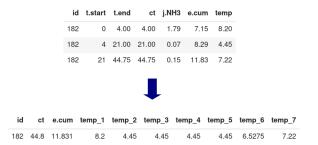
Model performance statistics based on parameter values given in Table 2 applied to both data subsets.

	Response	Pearson's r	ME ^a	MAE ^b	MBE ^c		
Test dataset 🔶	Evaluation subset						
	Flux (kg ha ⁻¹ h ⁻¹) ($n = 418$ intervals)	0.832	0.663	0.433	-0.099		
	72 h cum. emission (kg ha ⁻¹) ($n = 48$ plots)	0.861	0.620	5.63	-2.77		
	72 h relative cum. emission (frac. applied TAN) ($n = 48$ plots)	0.794	0.582	0.114	- 0.0435		
Training dataset -> Calibration subset							
	Flux (kg ha ⁻¹ h ⁻¹) ($n = 5371$ intervals)	0.844	0.686	0.462	-0.194		
	72 h cum. emission (kg ha ⁻¹) ($n = 490$ plots)	0.823	0.610	6.63	-2.94		
	72 h relative cum. emission (frac. applied TAN) ($n = 490$ plots)	0.802	0.530	0.118	-0.054		

\Rightarrow Can we do better with machine learning?

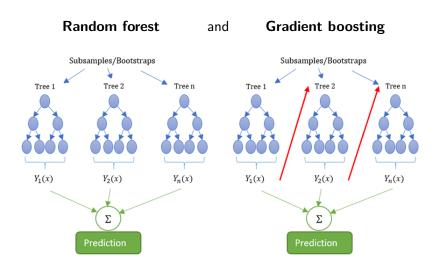
Prediction tests with Machine Learning

- 3 methods tested : random forest, xgboost, lasso
- prediction of the cumul only (last observation)
- transformation of the dynamic variables (= climatic variables) into plot level variable

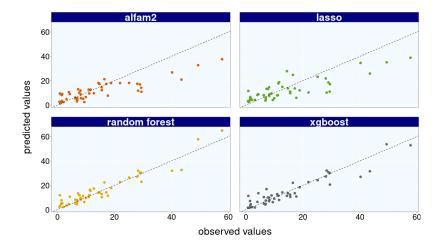


temp i = average temperature on the time interval [4(i-1); 4i] (i = 1, ..., 6) temp 7 = average temperature after 24h

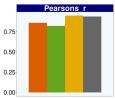
Prediction tests with Machine Learning



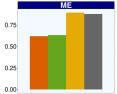
Results - Observed vs predicted values (test dataset)

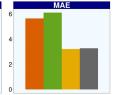


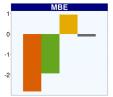
Results - Test dataset



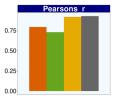
72h cum. emission

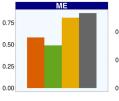


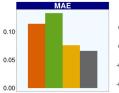


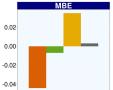


72h relative cum. emission



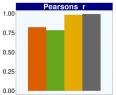




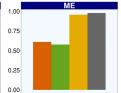


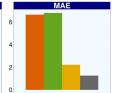
📕 alfam2 📕 lasso 📕 random forest 📕 xgboost

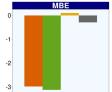
Results - Training dataset



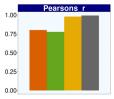
72h cum. emission

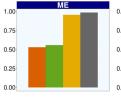


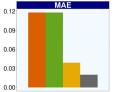


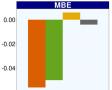


72h relative cum. emission









📕 alfam2 📕 lasso 📕 random forest 📕 xgboost

Predict the dynamic of the volatilization

Predict the dynamic of the volatilization

