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Abscission process

Abscission: the process shedding of various parts of an organism, such as a
plant dropping a leaf, fruit, flower, or seed.

An optimal execution of the abscission process is of major importance for
species survival

Environmental variations impact abscission process with varying effects over
developmental stages

Question:
Identify the most relevant set of environmental factors and the time periods at

which they modulate the abscission process
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Oil palm: fruit abscission process
The fruit abscission of oil palm trees (Dataset provided by ”le Centre de Recherches

Agricoles-Plantes Pérennes (CRA-PP)” (Tisné et al., 2020))
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Oil palm: fruit abscission process

To identify the environmental variables and the time periods affecting the oil
palm fruit abscission process

Figure
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Statistical model

y = µ+
G∑

g=1

Xgβg + ε, ε ∼ Nn(0, σ2In)

with
y = (y1, . . . , yn)

′ the n-vector of outcomes,

Xg =
[
x′g1, . . . ,x

′
gT

]
a n × T matrix of covariates measured at T regular

spaced times for g = 1, . . . ,G,
βg = (βg1, . . . , βgT )

′ the T -vector of coefficients associated to group g,
ε = (ε1, . . . , εn)

′ the n-vector of residuals,
σ2 the residual variance.
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Statistical model

y = µ+
G∑

g=1

Xgβg + ε, ε ∼ Nn(0, σ2In)

Objectives

To identify environmental variables→ Selection of groups of temporally
correlated variables (or time series)

To identify time periods→ Selection of correlated variables within groups

→ Need to develop statistical approaches selecting groups of correlated
variables and variables within groups while considering the group
structure and the natural order of variables within groups
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Statistical challenges

High correlation between consecutive variables→ ill-conditioned and
over-fitting problems
Double selection

→ Bayesian framework: selection and integration of dependence structure
between variables taken into account by specifying specific priors

Selection
To shrink towards zero small
coefficients while leaving large signals
large: Shrinkage priors

Structure
Priors with a variance-covariance
matrix related to structure information
between variables
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In fruit abscission process context

Continuous shrinkage priors (Park and Casella, 2008; Polson and Scott, 2011) with a
specific covariance structure to identify the environmental variables and the

time periods affecting the oil palm fruit abscission process

Figure
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Bayesian fused priors

Usual approach to take into account time structure within covariate matrix
while imposing sparsity on coefficients

Global-local parametrization

T∏
t=1

1√
2πυ2γ2

t σ
2
exp

(
− β2

t

2υ2γ2
t σ

2

)
and
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t=2

1√
2πλ2ω2

t σ
2
exp

(
− (βt − βt−1)

2

2λ2ω2
t σ

2

)

Global shrinkage parameters ν and λ: perform shrinkage on all
coefficients and their differences
Local shrinkage parameters γt and ωt : allow true large signals to escape
from the overall shrinkage
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Bayesian fused priors

To investigate the trade-off between strong shrinkage prior on coefficients and
their differences

Figure: Continuous shrinkage prior distributions
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Prior names Difference prior Coefficient prior Reference

Fused NE-NE λ2 ∼ IG(a, b) υ2 ∼ IG(s, r) (Kyung et al., 2010)

Bayesian fused Lasso ω2
t ∼ Exp(1/2) γ2

t ∼ Exp(1/2)
Fused NEG-NE λ2 = 1 υ2 ∼ IG(s, r) (Shimamura et al., 2019)

ω2
t |ψt ∼ Exp(ψt) γ2

t ∼ Exp(1/2)
ψt ∼ G(a, b)

Fused HS-NE λ ∼ C+(0, 1) υ2 ∼ IG(s, r) (Kakikawa et al., 2023)

ωt ∼ C+(0, 1) γ2
t ∼ Exp(1/2)

Fused HS-HS λ ∼ C+(0, 1) υ ∼ C+(0, 1)
ωt ∼ C+(0, 1) γj ∼ C+(0, 1)

Fused HS-NhC λ ∼ C+(0, 1) υ = 1
ωt ∼ C+(0, 1) γt ∼ C+(0, 1)

Table: Fused priors in the one group context (G = 1).
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Bayesian multi-group fused priors
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Prior names Difference prior Coefficient prior

Specific HS-NE λg ∼ C+(0, 1) υ2
g ∼ IG(s, r)

ωgt ∼ C+(0, 1) γ2
gt ∼ Exp(1/2)

Global HS-NE λg = λ

λ ∼ C+(0, 1) υ2
g ∼ IG(s, r)

ωgt ∼ C+(0, 1) γ2
gt ∼ Exp(1/2)

Specific HS-NhC λg ∼ C+(0, 1)
ωgt ∼ C+(0, 1) γgt ∼ C+(0, 1)

Global HS-NhC λg = λ
λ ∼ C+(0, 1)
ωgt ∼ C+(0, 1) γgt ∼ C+(0, 1)

Table: Fused priors in the multi-group context.
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Inference: technical aspects

Conjugate prior distributions:

βg |γg , λ
2,ωg , σ

2 ∼ NT (0, σ2Q−1
g ), g = 1, . . . ,G

where Qg is equal to

Qg =

(
Υ−1

g + D>g Ω−1
g Dg/λ

2
)
.

For all shrinkage parameters (Makalic and Schmidt, 2015):

x ∼ C+(0,1) ⇔ x2|ξ ∼ IG(1/2,1/ξ), ξ ∼ IG(1/2,1),

All full conditional distributions have closed forms→ Gibbs sampler (GitHub:
https://github.com/Heuclin/GroupFusedHorseshoe)
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Simulation study

Simulation design:
p = 1500 covariates divided into G = 1,10,30,100 groups

T = min
(

p
max(10,G) ,60

)
n = 150 and σ2 = 1,4

βt =



sin(4t/T − 2) + 2e−30(4t/T−2)2 t < T
0.5 t ∈ [T + 1, 2T ]
−0.5 t ∈ [2T + 1, (2 + 1/2)T ]
0.5 t ∈ [3T + 1, (3 + 1/3)T ]
−0.5 t ∈ [4T + 1, (4 + 1/4)T ]

0 otherwise

Xg ∼ N (0,AR0.95).
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Simulation results

Priors MCC MSEz MSEnz

Diff Coeff
HS NhC 0.90688 0.00003 0.01485

HS NE 0.90018 0.00067 0.05000
HS HS 0.06456 0.00000 2.33525
NE NE 0.21203 0.00273 0.04602

Table: Matthews Correlation Coefficient (MCC), mean squared errors of true zeroes
(MSEz ), and mean squared errors of non-zero coefficients MSEnz using the different
priors with residual variance σ2 equal to 1 and G = 1.
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Simulation results

Figure: (a) Mean squared errors of true zero coefficients MSEz , (b) Mean squared
errors of non-zeroes (MSEnz ), and (c) Matthews Correlation Coefficient (MCC) using
the different priors with residual variance σ2 equal to 1, and G = 5, 10, 30, 100.
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Application on oil palm

Data
1,173 bunches (statistical unit)
Outcome (y): number of days from pollination to fruit drop
5 climatic variables: Tmax, Tmin, Relative air humidity (RH), Rainfall (R),
Solar radiation (SR)
5 ecophysiological variables: Maximum daily vapor pressure deficit
(VPD), Fraction of transpirable soil water (FTSW), Supply-demand ratio
(SD), Daily reproductive demand (DRD)
121 time points for each environmental variables: p = 1,210 predictors
greater than n = 1,173 observations
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Application on oil palm
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Figure: Estimated coefficient profiles for DRD, SD, SR, Tmin. Gray shadows represent
the 95% credible interval.

Identification of 4 environmental variables: DRD, SD, SR, Tmin
Identification of relevant time periods

Tmin: smooth effect during the inflorescence development
DRD and SD: punctual effects at the end of the fruit bunch development
SR: smooth effect at the end of the fruit bunch development
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Conclusion/Perspectives

Conclusion
Four Bayesian priors proposed:

Able to handle different structures and to select relevant variables and/or groups
of variables,

Easily adaptable to a broad type of dependence structures : applicable in various
applications (varying coefficient models, near infrared spectroscopy context
(NIRS), QTL mapping, ...)

Perspectives

To integrate prior knowledge on strengths of connections,

To integrate dependence structures between observations,

To extend to multivariate case (Y multivariate),

To consider a multi-dimensional indexation.
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