Are fish Poisson? About the neurogenesis of the zebrafish using spatial point process analysis

Felix Cheysson Joint work with Nicolas Dray, Laure Mancini (Institut Pasteur), Udi Binshtok, David Sprinzak (Tel-Aviv University), and more

Université Gustave Eiffel, CNRS, UMR 8050, LAMA.

Statistiques au sommet de Rochebrune March 26th 2024

Are fish Poisson? About the neurogenesis of the zebrafish using spatial point process analysis

Felix Cheysson Joint work with Nicolas Dray, Laure Mancini (Institut Pasteur), Udi Binshtok, David Sprinzak (Tel-Aviv University), and more

Université Gustave Eiffel, CNRS, UMR 8050, LAMA.

Statistiques au sommet de Rochebrune March 26th 2024

When a zebra loves a fish very much, then...

Felix Cheysson

The zebrafish: a classic vertebrate model in biology

Felix Cheysson

Neurogenesis of zebrafish

Rochebrune, 2024-03-26 4 / 18

The zebrafish neurogenesis

• Development of Neural Stem Cells (NSCs) in the zebrafish dorsal pallium of the telencephalon.

 Homeostasis of Neural Stem Cells (NSCs) is maintained through renewal and differenciation mechanisms (Than-trong et al., 2020).

Live intravital imaging

• The Casper mutant (roy^{-/-};nacre^{-/-}) (White et al., 2008).

- Multicolor fluorescence and harmonics multiphoton microscopy (Dray et al., 2015).
 - Fluorescence: to detect NSC markers, and markers for activation events.
 - Harmonics: provide persistent landmarks for longitudinal imaging.
 - Video.

The BBQ: Big Biological Question

What spatial and temporal regulation mechanisms explain the homeostasis of the cell population and spatial organisation of the pallium?

Our approach:

- Spatial statistics to study the dependance between cell divisions.
- Biological experiments to (in-)validate the hypothetised signalling pathways.

Cells as a marked point process

Α

Point process formalism

- Consider a point process X as a locally finite random set on \mathbb{R}^2 with density ρ .
- Second-order density $\rho^{(2)}$: for any f measurable,

$$\mathbb{E}\left[\sum_{x \in \mathbf{X}} \sum_{y \in \mathbf{X}, y \neq x} f(x, y)\right] = \int \int f(x, y) \rho^{(2)}(\mathrm{d}x, \mathrm{d}y).$$

• Define $g(x,y) = \rho^{(2)}(x,y)/\rho(x)\rho(y)$.

• Assuming stationarity of X, g(x, y) = g(x - y), its reduced second moment measure is

$$\mathcal{K}(A) = \int_A g(x) \mathrm{d}x, \qquad ext{for } A ext{ Borel set}.$$

Statistics for second order moments

• Assuming isotropy of **X**, Ripley's K-function:

$$K(r) = \mathcal{K}(b(x,r)) \quad \left(= \frac{1}{\beta} \mathbb{E}\left[|\mathbf{X} \cap b(x,r) \setminus \{x\}| \right] \right).$$

- Example: for the Poisson process, then g(x) = 1 and K(r) = πr².
 Estimator for the K-function from a window W:
 - $\widehat{K}(r) = \widehat{\beta}^{-1} \sum_{\substack{x \in \mathbf{X} \cap W \\ y \in \mathbf{X} \cap W, x \neq y}} w(x, y)^{-1} \frac{\mathbb{1}\{|x y| \le r\}}{|\mathbf{X} \cap W|},$

where $w(x_i, x_j)$ provides an *edge correction*.

- L-function $\widehat{L}(r) = \left(\widehat{K}(r)/\pi\right)^{1/2}$ stabilises the variance.
- Generally, explicit formulas for the mean and variance of $\widehat{K}(r)$ unavailable (unless Poisson, see Lang and Marcon, 2013).

In the marked temporal case

- Assume the processes $\mathbf{X}_j^t = (\mathbf{X}_j^1, \dots, \mathbf{X}_j^T)$ are stationary (in time and space), and isotropic.
- Study interactions between types of cells through Ripley's function:

$$\widehat{K}_{ij}^t(r) = \left(\widehat{\beta}_i \widehat{\beta}_j |W|\right)^{-1} \sum_s \sum_{\substack{x \in \mathbf{X}_i^s \cap W \\ y \in \mathbf{X}_j^{s+t} \cap W, x \neq y}} w(x, y)^{-1} \mathbb{1}\{|x-y| \le r\}.$$

- Under random labelling, each process \mathbf{X}_{i}^{t} can be seen as a random thinning of the marked process \mathbf{X}^{t} , so that $K_{ij}^{t}(r) = K^{t}(r) = K(r)$ for any i, j.
- Inference usually achieved through Monte Carlo tests, or normal approximations when available.

A test of independence between point processes

- We want to test the dependence between NSCs in their different states (quiescent, qNSCs; activated, aNSCs; progenitors, aNP).
- Due to cellular constraints, Poisson hypothesis is wrong: need to test dependence between processes under another null hypothesis.
- Simulation envelopes (= fluctuation envelopes) can be computed under random labelling:

 $\mathcal{H}_0: \forall i, \mathbf{X}_i^t$ is an independent random thinning of \mathbf{X}^t .

- Idea: permutation test.
 - Simulate samples $(\widetilde{\mathbf{X}}_{(1)}^t, \dots, \widetilde{\mathbf{X}}_{(m)}^t)$ under random labelling.
 - Under \mathcal{H}_0 , \mathbf{X}^t has the same distribution as any $\widetilde{\mathbf{X}}^t_{(k)}$.
 - Conclude via any test statistic $f(\mathbf{X}^t)$ (e.g. Ripley or L-function):

$$\mathbb{P}_{\mathcal{H}_0}(f(\mathbf{X}^t) > f_{(k)}) = 1 - \frac{k}{m+1},$$

where $f_{(k)}$ denotes the k-th largest of the simulated values $f(\mathbf{X}_{(k)}^t)$.

Pictures are worth a thousand words

Are fish Poisson?

Felix Cheysson

Neurogenesis of zebrafish

Rochebrune, 2024-03-26 14 / 18

- aNP-mediated feedback inhibition on aNSCs?
- Notch3 signaling (= a pathway using the receptors Notch3 on qNSC) promotes NSC quiescence, and aNPs express the Notch ligand DeltaA.
- Experiment in zebrafish:
 - Decrease Notch signaling through a short treatment.
 - Abolition of the local inhibition verified by testing (cf. LY).
 - qNSCs for fish under the treatment rapidly undergo rapid division.

- Construction of a lattice model (system of EDPs + rules for lattice construction) to simulate and explore different mechanisms of interaction in NSCs (Video).
- Driven by data, and verified showing that the empirical statistical behaviour of the model is similar to that of the data.
- Neurons cannot be seen on live imaging of the pallium: explore spatial distribution of neurons on the simulations.

Lateral inhibition homogenises neurons in the pallium

- Comparison through two-sample permutation tests between simulations with and without lateral inhibition.
- Lateral inhibition supports more homogeneous neurogenesis output.

Felix Cheysson

Thank you for your attention.

For Further Reading I

Dray, Nicolas et al. (2015). "Large-scale live imaging of adult neural stem cells in their endogenous niche". In: Development 142.20, pp. 3592-3600. ISSN: 1477-9129. DOI: 10.1242/dev.123018. Lang, Gabriel and Eric Marcon (2013). "Testing randomness of spatial point patterns with the ripley statistic". In: ESAIM - Probability and Statistics 17, pp. 767–788. ISSN: 12623318. DOI: 10.1051/ps/2012027. arXiv: 1006.1567. Than-trong, Emmanuel et al. (2020). "Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells", In: Science Advances 6.18, eaaz5424, DOI: 10.1126/sciadv.aaz5424. 📄 White, Richard Mark et al. (2008). "Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis". In: Cell Stem Cell 2.2, pp. 183-189. ISSN: 19345909. DOI: 10.1016/j.stem.2007.11.002.