
Réseaux de neurones et modèles
physiques basés sur des
équations différentielles

Hugo Gangloff

Statistiques au sommet de Rochebrune, 25 - 29 mars 2024

Introduction

Physics Informed Neural Networks (PINNs)

• an hybrid machine-learning approach

• parametric approximation of the solution using neural networks

• exact computations of the derivatives

• both an alternative solver and a flexible framework for injecting
physical knowledge in statistical models (forward & inverse problems)

1

PINNs is a rapidly growing field

• First mention of the idea in (Dissanayake et al. 1994)

• Seminal work: PINNs for PDEs (Raissi et al. 2017; Raissi et al. 2019) and
since then many models have been proposed

• Theoretical analysis (S. Wang, Teng, et al. 2020; Doumèche et al. 2023)

• Recent reviews (Karniadakis et al. 2021; Cuomo et al. 2022; S. Wang,
Sankaran, et al. 2023)

• First benchmark in (Hao, Yao, et al. 2023)

• Two major Python libraries: DeepXDE (L. Lu et al. 2021) and Nvidia
Modulus (https://developer.nvidia.com/modulus)

2

https://developer.nvidia.com/modulus

Outline

Basics

Forward problems

Inverse problems

jinns: a Python package for machine learning with PINNs

Conclusion

Ñ Some of the slides have been written by Nicolas Jouvin
Ñ All the experimental results come from our package jinns

Basics

Partial Differential Equations

In all generality, a PDE with solution u is defined by a space domain Ω Ă Rd, a
time domain I “ r0, T s, a differential operator parameterized by θ such that

Nθruspt, xq “ 0, @t, x P I ˆ Ω

with initial condition

up0, ¨q “ u0pxq, @x P Ω

and a boundary condition

Bruspt, δxq “ fpt, δxq, @t P I,@δx P BΩ
3

Traditional PDE solvers

• mesh-dependent, approximate derivatives

• piecewise approximation of the solution

• theoretical and numerical guarantees

• difficult to account for observations

4

Illustration: a classical example

Burger’s equation in 1D
With Ω “ r´1, 1s, and I “ r0, 1s,

$

’

’

&

’

’

%

B

Bt
upt, xq ` upt, xq B

Bx
upt, xq ´ θ B2

Bx2upt, xq “ 0,

up0, xq “ ´ sinpπxq,

upt,´1q “ upt, 1q “ 0

On the right we plot u for θ “ 0.01π

5

Illustration: a classical example

Burger’s equation in 1D
With Ω “ r´1, 1s, and I “ r0, 1s,

$

’

’

&

’

’

%

B

Bt
upt, xq ` upt, xq B

Bx
upt, xq ´ θ B2

Bx2upt, xq “ 0,

up0, xq “ ´ sinpπxq,

upt,´1q “ upt, 1q “ 0

On the right we plot u for θ “ 0.01π

5

Illustration: ODEs and a classical example

Ordinary Differential Equations: uptq only, no spatial domain

Generalized Lotka Volterra
B

Bt
uiptq “ ri ´

ÿ

j‰i

αijujptq ´ αi,iuiptq ` ciuiptq `
ÿ

j‰i

cjujptq, i P t1, 2, 3u

Plot of each solution ui

0 5 10 15 20 25 30
t

0

10

20

30

40

Pop. 1
Pop. 2
Pop. 3

6

Illustration: ODEs and a classical example

https://www.inserm.fr/dossier/

microbiote-intestinal-flore-intestinale/

(Hossie et al. 2024)

6

https://www.inserm.fr/dossier/microbiote-intestinal-flore-intestinale/
https://www.inserm.fr/dossier/microbiote-intestinal-flore-intestinale/

Supervised learning

Observe: tpxi, yiqu
nobs
i“1

Goal: learning û such that y « ûpxq on new data

How: Parametric function uνpxq and minimize a loss L

û “ uν̂ ν̂ “ argmin
ν

Lpν;X, Y q

The loss can be

• mean-squared error: Lpνq “
ř

i |yi ´ uνpxiq|2

• likelihood of some parametric statistical model: Lpνq “ ´ log pνpX, Y q

The function uν may be

• linear uνpxq “ νJx, polynomial, functional basis (splines, etc.)
• or ...

7

Neural networks

• A neural network uν is a composition of L layers

• Each layer is an elementary parametric function composed with σ an
activation function ul

νl
“ σpglνlq

• Parameters: ν “ tν1, . . . , νLu.

• A standard combination is an affine gl and σ “ tanh activation:

ul
νl

pxq “ tanhpwJ
l x ` blq with νl “ twl, blu

• Universal approximators: can approximate many classes of functions with
sufficiently large depth or width (Hornik et al. 1989)

8

Neural networks

• A neural network uν is a composition of L layers

• Each layer is an elementary parametric function composed with σ an
activation function ul

νl
“ σpglνlq

• Parameters: ν “ tν1, . . . , νLu.

• A standard combination is an affine gl and σ “ tanh activation:

ul
νl

pxq “ tanhpwJ
l x ` blq with νl “ twl, blu

• Universal approximators: can approximate many classes of functions with
sufficiently large depth or width (Hornik et al. 1989)

8

Neural networks illustrated

ν̂ P argmin
ν

LNNpνq with LNNpνq “

nobs
ÿ

i“1

|yi ´ uνpxiq|
2

Ñ Highly non-convex and hard to minimize (Lee et al. 2016)

Adapted from L. Lu et al. (2021)

9

Loss optimization

Stochastic Gradient Descent
In order to train the neural network, we classically perform stochastic gradient
descent with mini-batches of data. At each step t:

νt`1
“ νt

´ γ
ÿ

pxi,yiqPDk

∇νLNNpν, xi, yiq,

where the dataset D is divided in mini-batches D “ tD1, . . . , DKu

We perform a step over all the mini-batches and call this an epoch

Efficient computation of ∇LNN is one of the critical point in deep learning

10

Forward problems

Introducing physical prior

Constrain ûν to be solution to a given PDE

11

Introducing physical prior

Loss function: for a set of equation parameters θ and neural network uν

LPINNpν, θq –

nx
ÿ

i“1

nt
ÿ

j“1

|Nθruνsptj, xiq|
2

` wic

nx
ÿ

i“1

|uνp0, xiq ´ u0|
2

` wbc

nt
ÿ

j“1

nbc
ÿ

k“1

|Bruνsptj, δxkq ´ fptj, δxkq|
2

` wobs

nobs
ÿ

l“1

|ul ´ uνptl, xlq|
2
obs,

“Ldyn ` wbcLbc ` wicLic
looooooooooooomooooooooooooon

physical prior

` wobsLobs
looomooon

statistical information

where

• txi, tj, δxkui,j,k are collocation points drawn from Ω ˆ r0, T s ˆ BΩ

• tpptl, xlq, ulqu
nobs
l“1 are noisy observations of u‹ (possibly missing)

• wic, wbc, wobs are weights balancing the different terms 11

Introducing physical prior

Ñ LPINN is even more highly non-convex and harder to optimize than LNN

Graphical representation of a PINN (wobs “ 0) adapted from L. Lu et al. (2021)

11

Forward problem

Goal: for a given set of equation parameters θ, find a parametric function uν̂

ν̂ P argmin
ν

LPINNpν, θq

We can distinguish 2 situations

1. PDE solver (wobs “ 0) where PINNs are viewed as an alternative to
standard numerical methods

2. Hybrid-modeling (wobs ą 0) where LPINN combines statistical
information and physics prior

12

Forward problem

Goal: for a given set of equation parameters θ, find a parametric function uν̂

ν̂ P argmin
ν

LPINNpν, θq

• compute the loss Ñ compute gradients w.r.t. the NN inputs, e.g.:

ÿ

x,t

|Nθruνspt, xq|
2

“
ÿ

t,x

|
Buν

Bt
pt, xq́ ∆uνpt, xq|

2
“

ÿ

t,x

ˇ

ˇ

ˇ

ˇ

Buν

Bt
pt, xq´

B2uν

Bx2
1

pt, xq´
B2uν

Bx2
2

pt, xq

ˇ

ˇ

ˇ

ˇ

2

• stochastic optimization Ñ compute gradients w.r.t. ν

Ñ Both tasks rely on automatic differentiation

12

Automatic Differentiation (AD) (Baydin et al. 2018)

• Numerical and exact way to compute the derivatives of a function

• Automatic differentiation ‰ symbolic differentiation ‰ numerical
differentiation

• Particularly suitable for composition of elementary functions (like NNs):
leverages chain rule & known derivatives

• Backpropagation Goodfellow et al. (2016) is the main AD algorithm

• Implemented in all ML libraries (tensorflow, PyTorch, JAX, etc.)

13

Automatic Differentiation (AD) (Baydin et al. 2018)

uν : x ÞÑ fL ˝ fL´1 ˝ ¨ ¨ ¨ ˝ f0pxq with flpxq “ σpwlx ` blq

Let hl`1 – flphlq, h0 – x and y – hL`1 “ uνpxq. We are interested in
computing ∇xk

yk1 , @k, k1. Let us write the chain rule in the vectorial case. We
follow the computational graph:

∇xk
yk1

loomoon

1ˆ1

“ ∇hL`1
yk1

looomooon

1ˆdimy

ˆ JachL
fLphLq

loooooomoooooon

dimyˆdimhL

ˆ JachL´1
fL´1phL´1q

loooooooooomoooooooooon

dimhLˆdimhL´1

ˆ ¨ ¨ ¨ ˆ Jach0f0ph0q
looooomooooon

dimh1ˆdimx

ˆ ∇xk
h0

loomoon

dimxˆ1

Ñ The same procedure is used for gradients with respect to ν

Ñ There are at least 2 ways to parse the chain rule formula...

13

Forward AD in a neural network

∇xk
y “

˜

∇hL`1
yˆ

˜

JachL
fLphLqˆ

˜

JachL´1
fL´1phL´1qˆ¨ ¨ ¨ˆ

˜

Jach0f0ph0qˆ∇xk
h0

¸¸¸¸

• Right to left successive computations of the type Jachl
flphlq

loooomoooon

dimhl`1ˆhl

ˆ ∇xk
hl

loomoon

dimhlˆ1

• This elementary operation is called a Jacobian-Vector Product in AD

• All the points where we need to evaluate the Jacobians are computed on the
fly as we go down the computational graph (here, these are the hl)

14

Forward AD in a neural network

∇xk
y “

˜

∇hL`1
yˆ

˜

JachL
fLphLqˆ

˜

JachL´1
fL´1phL´1qˆ¨ ¨ ¨ˆ

˜

Jach0f0ph0qˆ∇xk
h0

¸¸¸¸

• JVPs hardcoded in AD libraries for all kinds of f Ñ Jacobians are never
explicitly computed

• Forward mode enables recovering one column at a time of the
Jacobian ∇xy Ñ most efficient for tall Jacobians, i.e., differentiation
of a function from Rdimx Ñ Rdimm, dimy ąą dimx

14

Reverse AD in a neural network

∇xyk1 “

˜˜˜˜

∇hL`1
yk1̂ JachL

fLphLq

¸

ĴachL´1
fL´1phL´1q

¸

.̂ . .̂ Jach0f0ph0q

¸

ˆ∇xh0

¸

• Left to right successive computations of the type ∇hl`1
yk1

looomooon

dim1ˆhl`1

ˆ Jachl
flphlq

loooomoooon

dimhl`1ˆhl

• This elementary operation is called a Vector-Jacobian Product in AD

• Reverse AD relies on a previous forward pass in the computational graph: we
precompute and store all the points at which we will evaluate the Jacobians

• The popular backpropagation algorithm is a reverse AD algorithm

15

Reverse AD in a neural network

∇xyk1 “

˜˜˜˜

∇hL`1
yk1̂ JachL

fLphLq

¸

ĴachL´1
fL´1phL´1q

¸

.̂ . .̂ Jach0f0ph0q

¸

ˆ∇xh0

¸

• VJPs hardcoded in AD libraries for all kinds of f Ñ Jacobians are never
explicitly computed

• Reverse mode enables recovering one row at a time of the Jacobian
∇xy Ñ most efficient for large Jacobians, i.e., differentiation of a
function from Rdimx Ñ Rdimy, dimx ąą dimy

• The popular backpropagation algorithm is a reverse AD algorithm

15

Research direction: improving learning

• Importance sampling of the collocation points
ż

Ω

|N ruspxq|
2 dx «

1

n

n
ÿ

i“1

1

qpxiq
|N ruspxiq|

2, xi
i.i.d.
„ q.

Ñ adaptive q charges regions of Ω with high residuals (Wu et al. 2023)

• Adaptive weights wobs, wic and wbc during learning (Xiang et al. 2022)

16

Research directions: theoretical analysis

• Results in the PDE solver case (Mishra et al. 2022)

• Results in the hybrid modeling case (Doumèche et al. 2023)
ÑRegularization strategies to prevent over-fitting

min
ν

LPINNpνq ` λ}ν}

Ñ Sobolev regularization of the risk to have uν converging to the PDE
solution

17

Research directions: metamodel learning

• Learn a function ûνpt, x, θq such that

@θ, Nθrûνp¨, ¨, θqspt, xq « 0

• Learn to solve many equations at once Ñ evaluation is cheap with NNs
• HyperPINNs (Avila Belbute-Peres et al. 2021) have been proposed for this

task

from (Avila Belbute-Peres et al. 2021)

18

Illustration: metamodel for an advection diffusion PDE

• Consider the following PDE problem
$

’

’

&

’

’

%

B

Bt
upt, xq “ D∆upt, xq ` upt, xqpr ´ upt, xqq, t ě 0, x P Ω,Ω “ r0, 50s2

Bupt,xq

Bn

ˇ

ˇ

ˇ

xPBΩ
“ ∇upt, xq ¨ n “ 0, t ě 0,Neumann condition,

up0, xq “ u0pxq, x P Ω

• The hyperparameters are D and r

• Train an HyperPINN to learn a function ûν such that
@pD, rq P r0.05, 1s ˆ r0.05, 0.15s, NpD,rqrûνp¨, ¨, D, rqspt, xq « 0

19

Illustration: metamodel for an advection diffusion PDE

ûpt, xq estimated for D “ 1, r “ 0.15

ûpt, xq estimated for D “ 0.05, r “ 0.05
19

Research directions: reducing computational costs

• More efficient computation of high-order derivatives (Bettencourt et al.
2019; R. Li et al. 2024)

• Leveraging forward mode AD with Separable PINNs (Cho et al. 2024)

20

Inverse problems

Inverse problem

In most applications, we are also interested in estimating the equation
parameters θ̂ as well as an approximate solution uν̂ . This leads to solve

pν̂, θ̂q P argmin
ν,θ

LPINNpν, θq

• The nature of the problem suggests an iterative optimization scheme (Raissi
et al. 2019)

1. ν̂pt`1q P argminν LPINNpν, θptqq

2. θ̂pt`1q P argminθ LPINNpνpt`1q, θq

21

Toy example

• Toy example from the benchmark (Hao, Liu, et al. 2022)

• Consider the following PDE on Ω “ r0, 1s2, I “ r0, 1s:
$

’

’

&

’

’

%

B

Bt
upt, x, yq ´ ∇papt, x, yq∇upt, x, yqq “ fpt, x, yq,

fpt, x, yq “ pp4π2 ´ 1q sin πx sin πy ` π2p2 sin2 πx sin2 πy ´ cos2 π sin2 πy´

sin2 πx cos2 πyqqe´t, (source term).

• Our goal is to learn both upt, x, yq and apt, x, yq for all px, yq P Ω2, t P I

• The diffusion coefficient a is itself modeled by a NN

22

Toy example

upt, x, yq as estimated by the PINN

Ñ This corresponds to the analytical solution: upt, x, yq “ e´t sinπx sin πy

22

Mechanistic-statistical models

General case: u‹ is indirectly involved in some statistical model Y | O

iq u‹ solution of PDEθ‹ , (Mecanistic model)

iiq Y | O „ pp¨ | O, u‹, θ‹
q. (Statistical model)

• In (Roques 2013), the inference for θ is done in the Bayesian context by
sampling from the posterior ppθ | Y q 9 ppY | O, u‹, αqπpθq

• Computing the likelihood or posterior involves u‹ Ñ numerous calls a PDE
solver

• Can we use PINNs to bypass the need of PDE solvers ?

23

Mechanistic-statistical models: toy example

• We have observed tpptl, xlq, ylqu
nobs
l“1 forming the likelihood

nobs
ź

l“1

ppyl | ptl, xlq, u
‹, D, rq “

nobs
ź

l“1

N pyl;u
‹
D,rptl, xlq, σ

2
q

• with B

Bt
u‹
D,rpt, xq “ D∆u‹

D,rpt, xq ` u‹
D,rpt, xqpr ´ u‹

D,rpt, xqq, t ě 0, x P

Ω,Ω “ r0, 50s2

• Define the prior πpD, rq91p0.05 ď D ď 1q1p0.05 ď r ď 0.15q

• We want to sample from the posterior ppD, r|yq

24

Mechanistic-statistical models: toy example

• Traditional MCMC approach (Roques 2013)
Ñ solve the PDE for each new proposals pD, rq

• Potential PINN/MCMC approach
Ñ Make the effort to train PINN
ûνpt, x,D, rq, @pD, rq P r0.05, 1s ˆ r0.05, 0.15s

Ñ Only need a forward pass in the PINN for each proposal pD, rq

Ñ Orders of magnitude faster after once the network is trained...

24

Mechanistic-statistical models: in the real world

• Observations from more complex noise models
Ñ e.g. count data: observations are tpptl, ωlq, ylqu where ωl Ă Ω and the
likelihood reads

nobs
ź

l“1

ppyl | ptl, ωlq, u
‹, D, rq “

nobs
ź

l“1

Ppyl;

ż

ωl

u‹
D,rptl, xqdxq

25

Mechanistic-statistical models: in the real world

• Often, we have nested covariates (Soubeyrand et al. 2014)
Ñ e.g. a spatially varying reproduction rate rpxq which depends on the type
of forest covering cpxq (data we have access to) through the logistic link:

rpxq “
1

1 ` eθ0`θ1cpxq`θ2cpxq2

Ñ We want to estimate the vector θ

25

Mechanistic-statistical models: in the real world

From (Louvrier et al. 2020)

25

Mechanistic-statistical models: in the real world

From (Louvrier et al. 2020)

25

jinns

JAX + PINNs = jinns

• jinns is developped by Nicolas Jouvin (MIA, Paris-Saclay, INRAE) and me

• Past members of the project: Pierre Gloaguen (now at LMBA, Université
Bretagne-Sud) and Achille Thin (now data scientist at Genesis)

• Modulable to implement your own research ideas with PINNs

• Development is driven towards the resolution of inverse problems

• Optimized code thanks to JAX

• Integrates the JAX ecosystem: diffrax, equinox, blackjax, optax, ...

https://pypi.org/project/jinns/

26

https://pypi.org/project/jinns/

JAX + PINNs = jinns

• jinns is developped by Nicolas Jouvin (MIA, Paris-Saclay, INRAE) and me

• Past members of the project: Pierre Gloaguen (now at LMBA, Université
Bretagne-Sud) and Achille Thin (now data scientist at Genesis)

• Modulable to implement your own research ideas with PINNs

• Development is driven towards the resolution of inverse problems

• Optimized code thanks to JAX

• Integrates the JAX ecosystem: diffrax, equinox, blackjax, optax, ...

https://pypi.org/project/jinns/

26

https://pypi.org/project/jinns/

JAX

JAX Python library (Bradbury et al. 2018):

• automatic differentiation: forward/backward AD, custom JVPs/VJPs, ...
• code vectorization and parallel computing: vmap, pmap, shardings, ...
• Just-In-Time compilation: jax.numpy Ñ jaxpr Ñ XLA

openxla.org
27

Working with jinns

Loss
LPINNpν, θq

Ldyn Lbc Lic Lobs
. . .

PINN
uν

nn_archi = [
[Linear, 2, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 1],
]

Mesh
Ω, BΩ and I

Observations
tpol, ylqu

nobs
l“1

Hyperparameters
θ

Optimization
minν LPINNpνq

First define uν

• Helper functions for standard architectures
• Users can implement their own neural network architectures
• PINNs, HyperPINNs, Separable PINNs are implemented 28

Working with jinns

Loss
LPINNpν, θq

Ldyn Lbc Lic Lobs
. . .

PINN
uν

nn_archi = [
[Linear, 2, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 1],
]

Mesh
Ω, BΩ and I

Observations
tpol, ylqu

nobs
l“1

Hyperparameters
θ

Optimization
minν LPINNpνq

Then define the space/time domain

• Controls the collocation points on the sets Ω, BΩ and I “ r0, T s

• DataGenerator objects will send batches of collocation points to the loss 28

Working with jinns

Loss
LPINNpν, θq

Ldyn Lbc Lic Lobs
. . .

PINN
uν

nn_archi = [
[Linear, 2, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 1],
]

Mesh
Ω, BΩ and I

Observations
tpol, ylqu

nobs
l“1

Hyperparameters
θ

Optimization
minν LPINNpνq

It is also possible to send to the loss batches of observations and/or batches
of hyperparameters

28

Working with jinns

Loss
LPINNpν, θq

Ldyn Lbc Lic Lobs
. . .

PINN
uν

nn_archi = [
[Linear, 2, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 1],
]

Mesh
Ω, BΩ and I

Observations
tpol, ylqu

nobs
l“1

Hyperparameters
θ

Optimization
minν LPINNpνq

Finally, define your loss, i.e. your PDE problem. A loss is composed of:

• DynamicLoss classes implementing Ldyn

• Initial and boundary conditions
• Other user-defined constraints (normalization, Sobolev, ...)

28

Working with jinns

Loss
LPINNpν, θq

Ldyn Lbc Lic Lobs
. . .

PINN
uν

nn_archi = [
[Linear, 2, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 1],
]

Mesh
Ω, BΩ and I

Observations
tpol, ylqu

nobs
l“1

Hyperparameters
θ

Optimization
minν LPINNpνq

Finally, define your loss, i.e. your PDE problem. A loss is composed of:

• DynamicLoss classes implementing Ldyn

• Initial and boundary conditions
• Other user-defined constraints (normalization, Sobolev, ...)

28

Working with jinns

Loss
LPINNpν, θq

Ldyn Lbc Lic Lobs
. . .

PINN
uν

nn_archi = [
[Linear, 2, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 30],
[tanh],
[Linear, 30, 1],
]

Mesh
Ω, BΩ and I

Observations
tpol, ylqu

nobs
l“1

Hyperparameters
θ

Optimization
minν LPINNpνq

Optimization is carried by the solve() function
• Uses optax optimizers: several optimization algorithms available
• Combines the PINN, the loss and all the DataGenerator objects
• Handles optimization w.r.t. ν and/or θ (forward/inverse problems)

28

Comparison with DeepXDE

DeepXDE (L. Lu et al. 2021) the most popular library for research with PINNs

• Wider scope than PINNs

• Several backends are being implemented (JAX, tensorflow, pytorch, ...)

• Slower than jinns

• No focus on inverse problems (see PINNacle (Hao, Liu, et al. 2022))

29

Conclusion

Conclusion

Pros:

• Fast by leveraging AD and modern ML libraries

• Flexible framework to incorporate physics prior into statistical learning

• Promising results on many classical problems, offers interesting research
directions and new perspectives

Cons:

• Can fail to converge, requires hyper-parameter tuning

• Few theoretical results

Ñ Long-term impact of PINNs is still unclear

30

References i

[1] F. de Avila Belbute-Peres, Y.-f. Chen, and F. Sha. HyperPINN: Learning parameterized differential equations with
physics-informed hypernetworks. 2021. arXiv: 2111.01008 [cs.LG].

[2] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. “Automatic differentiation in machine learning: a survey”.
In: Journal of machine learning research 18.153 (2018), pp. 1–43.

[3] J. Bettencourt, M. J. Johnson, and D. Duvenaud. “Taylor-mode automatic differentiation for higher-order derivatives in
JAX”. In: Program Transformations for ML Workshop at NeurIPS 2019. 2019.

[4] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy programs. Version 0.3.13. 2018.
URL: http://github.com/google/jax.

[5] J. Cho, S. Nam, H. Yang, S.-B. Yun, Y. Hong, and E. Park. “Separable physics-informed neural networks”. In: Advances in
Neural Information Processing Systems 36 (2024).

[6] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. “Scientific machine learning through
physics–informed neural networks: Where we are and what’s next”. In: Journal of Scientific Computing 92.3 (2022), p. 88.

[7] M. Dissanayake and N. Phan-Thien. “Neural-network-based approximations for solving partial differential equations”. In:
communications in Numerical Methods in Engineering 10.3 (1994), pp. 195–201.

[8] N. Doumèche, G. Biau, and C. Boyer. “Convergence and error analysis of PINNs”. In: arXiv preprint arXiv:2305.01240 (2023).

https://arxiv.org/abs/2111.01008
http://github.com/google/jax

References ii

[9] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.

[10] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu. “Physics-informed machine learning: A survey on problems,
methods and applications”. In: arXiv preprint arXiv:2211.08064 (2022).

[11] Z. Hao, J. Yao, C. Su, H. Su, Z. Wang, F. Lu, Z. Xia, Y. Zhang, S. Liu, L. Lu, et al. “Pinnacle: A comprehensive benchmark
of physics-informed neural networks for solving pdes”. In: arXiv preprint arXiv:2306.08827 (2023).

[12] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks are universal approximators”. In: Neural
networks 2.5 (1989), pp. 359–366.

[13] P. J. Hossie, B. Laroche, T. Malou, L. Perrin, T. Saigre, and L. Sala. “Simulating interactions in microbial communities
through Physics Informed Neural Networks: towards interaction estimation”. In: (Feb. 2024). working paper or preprint. URL:
https://hal.inrae.fr/hal-04440736.

[14] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. “Physics-informed machine learning”. In:
Nature Reviews Physics 3.6 (2021), pp. 422–440.

[15] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. “Gradient descent only converges to minimizers”. In: Conference on
learning theory. PMLR. 2016, pp. 1246–1257.

[16] R. Li, H. Ye, D. Jiang, X. Wen, C. Wang, Z. Li, X. Li, D. He, J. Chen, W. Ren, et al. “A computational framework for neural
network-based variational Monte Carlo with Forward Laplacian”. In: Nature Machine Intelligence (2024), pp. 1–11.

http://www.deeplearningbook.org
https://hal.inrae.fr/hal-04440736

References iii

[17] J. Louvrier, J. Papaix, C. Duchamp, and O. Gimenez. “A mechanistic–statistical species distribution model to explain and
forecast wolf (Canis lupus) colonization in South-Eastern France”. In: Spatial Statistics 36 (2020), p. 100428.

[18] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. “DeepXDE: A deep learning library for solving differential equations”. In:
SIAM review 63.1 (2021), pp. 208–228.

[19] S. Mishra and R. Molinaro. “Estimates on the generalization error of physics-informed neural networks for approximating a
class of inverse problems for PDEs”. In: IMA Journal of Numerical Analysis 42.2 (2022), pp. 981–1022.

[20] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations”. In: Journal of Computational physics 378
(2019), pp. 686–707.

[21] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics informed deep learning (part i): Data-driven solutions of nonlinear
partial differential equations”. In: arXiv preprint arXiv:1711.10561 (2017).

[22] L. Roques. “Modèles de réaction-diffusion pour l’écologie spatiale: Avec exercices dirigés”. In: Modèles de réaction-diffusion
pour l’écologie spatiale (2013), pp. 1–176.

[23] S. Soubeyrand and L. Roques. “Parameter estimation for reaction-diffusion models of biological invasions”. In: Population
ecology 56 (2014), pp. 427–434.

[24] S. Wang, S. Sankaran, H. Wang, and P. Perdikaris. “An expert’s guide to training physics-informed neural networks”. In:
arXiv preprint arXiv:2308.08468 (2023).

References iv

[25] S. Wang, Y. Teng, and P. Perdikaris. “Understanding and mitigating gradient pathologies in physics-informed neural
networks”. In: arXiv preprint arXiv:2001.04536 (2020).

[26] C. Wu, M. Zhu, Q. Tan, Y. Kartha, and L. Lu. “A comprehensive study of non-adaptive and residual-based adaptive sampling
for physics-informed neural networks”. In: Computer Methods in Applied Mechanics and Engineering 403 (2023), p. 115671.

[27] Z. Xiang, W. Peng, X. Liu, and W. Yao. “Self-adaptive loss balanced Physics-informed neural networks”. In: Neurocomputing
496 (2022), pp. 11–34.

Jacobian-vector product: example

• Take a simple scalar activation function f : x ÞÑ tanhpxq. Its associated
JVP is a function

px, vq ÞÑ tanh1
pxqv “ p1 ´ x2

qv, @px, vq P R2

• Take the example of a linear layer function
f : x ÞÑ wx ` b, x P Rn, w P Rmˆn, b P Rm. Its associated JVP is a function

px, vq ÞÑ
df

dx
v “ wv, @px, vq P pRn

q
2

• Remark that we expressed the JVPs as expression devoid of Jacobians.
Composing the JVPs in forward AD is thus efficient

	Introduction
	Basics
	Forward problems
	Inverse problems
	jinns: a Python package for machine learning with PINNs
	Conclusion
	Appendix

