Réseaux de neurones et modèles physiques basés sur des équations différentielles

Hugo Gangloff

PARIS-SACIA

Introduction

Physics Informed Neural Networks (PINNs)

• an hybrid machine-learning approach

• parametric approximation of the solution using neural networks

• exact computations of the derivatives

 both an alternative solver and a flexible framework for injecting physical knowledge in statistical models (forward & inverse problems)

PINNs is a rapidly growing field

- First mention of the idea in (Dissanayake et al. 1994)
- Seminal work: PINNs for PDEs (Raissi et al. 2017; Raissi et al. 2019) and since then many models have been proposed
- Theoretical analysis (S. Wang, Teng, et al. 2020; Doumèche et al. 2023)
- Recent reviews (Karniadakis et al. 2021; Cuomo et al. 2022; S. Wang, Sankaran, et al. 2023)
- First benchmark in (Hao, Yao, et al. 2023)
- Two major Python libraries: DeepXDE (L. Lu et al. 2021) and Nvidia Modulus (https://developer.nvidia.com/modulus)

Outline

Basics

Forward problems

Inverse problems

jinns: a Python package for machine learning with PINNs

Conclusion

 \rightarrow Some of the slides have been written by Nicolas Jouvin

 \rightarrow All the experimental results come from our package jinns

Basics

In all generality, a PDE with solution u is defined by a space domain $\Omega \subset \mathbb{R}^d$, a time domain I = [0, T], a differential operator parameterized by θ such that

$$\mathcal{N}_{\theta}[u](t,x) = 0, \quad \forall t, x \in I \times \Omega$$

with initial condition

$$u(0,\cdot) = u_0(x), \quad \forall x \in \Omega$$

and a boundary condition

$$\mathcal{B}[u](t,\delta x) = f(t,\delta x), \quad \forall t \in I, \forall \delta x \in \partial \Omega$$

Traditional PDE solvers

• mesh-dependent, approximate derivatives

• piecewise approximation of the solution

• theoretical and numerical guarantees

• difficult to account for observations

Burger's equation in 1D With $\Omega = [-1, 1]$, and I = [0, 1],

4

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) + u(t,x)\frac{\partial}{\partial x}u(t,x) - \theta\frac{\partial^2}{\partial x^2}u(t,x) = 0,\\ u(0,x) = -\sin(\pi x),\\ u(t,-1) = u(t,1) = 0 \end{cases}$$

On the right we plot u for $\theta=0.01\pi$

Burger's equation in 1D With $\Omega = [-1, 1]$, and I = [0, 1],

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) + u(t,x)\frac{\partial}{\partial x}u(t,x) - \theta\frac{\partial^2}{\partial x^2}u(t,x) = 0, \\ u(0,x) = -\sin(\pi x), \\ u(t,-1) = u(t,1) = 0 \end{cases}$$

On the right we plot u for $\theta=0.01\pi$

Illustration: ODEs and a classical example

Ordinary Differential Equations: u(t) only, no spatial domain

Generalized Lotka Volterra

$$\frac{\partial}{\partial t}u_i(t) = r_i - \sum_{j \neq i} \alpha_{ij}u_j(t) - \alpha_{i,i}u_i(t) + c_iu_i(t) + \sum_{j \neq i} c_ju_j(t), i \in \{1, 2, 3\}$$

Plot of each solution u_i

Illustration: ODEs and a classical example

https://www.inserm.fr/dossier/
microbiote-intestinal-flore-intestinale/

(Hossie et al. 2024)

Supervised learning

Observe: $\{(x_i, y_i)\}_{i=1}^{n_{obs}}$

Goal: learning \hat{u} such that $y \approx \hat{u}(x)$ on new data

How: Parametric function $u_{\nu}(x)$ and minimize a loss \mathcal{L}

$$\hat{u} = u_{\hat{\nu}}$$
 $\hat{\nu} = \operatorname*{arg\,min}_{\nu} \mathcal{L}(\nu; X, Y)$

The loss can be

- mean-squared error: $\mathcal{L}(\nu) = \sum_i |y_i u_{\nu}(x_i)|^2$
- likelihood of some parametric statistical model: $\mathcal{L}(\nu) = -\log p_{\nu}(X, Y)$

The function u_{ν} may be

- linear $u_{\nu}(x) = \nu^{\top} x$, polynomial, functional basis (splines, etc.)
- or ...

Neural networks

- A neural network u_{ν} is a composition of L layers
- Each layer is an elementary parametric function composed with σ an activation function $u_{\nu_l}^l=\sigma(g_{\nu_l}^l)$

Neural networks

- A neural network u_{ν} is a composition of L layers
- Each layer is an elementary parametric function composed with σ an activation function $u_{\nu_l}^l=\sigma(g_{\nu_l}^l)$

• Parameters:
$$\nu = \{\nu_1, \ldots, \nu_L\}.$$

• A standard combination is an affine g^l and $\sigma = \tanh$ activation:

$$u_{
u_l}^l(x) = anh(w_l^{ op}x + b_l)$$
 with $u_l = \{w_l, b_l\}$

• Universal approximators: can approximate many classes of functions with sufficiently large depth or width (Hornik et al. 1989)

Neural networks illustrated

$$\hat{\nu} \in \operatorname*{arg\,min}_{\nu} \mathcal{L}_{\mathrm{NN}}(\nu) \text{ with } \mathcal{L}_{\mathrm{NN}}(\nu) = \sum_{i=1}^{n_{obs}} |y_i - u_{\nu}(x_i)|^2$$

 \rightarrow Highly non-convex and hard to minimize (Lee et al. 2016)

Adapted from L. Lu et al. (2021)

Loss optimization

Stochastic Gradient Descent

In order to train the neural network, we classically perform stochastic gradient descent with *mini-batches* of data. At each step t:

$$\nu^{t+1} = \nu^t - \gamma \sum_{(x_i, y_i) \in D_k} \nabla_{\nu} \mathcal{L}_{\mathrm{NN}}(\nu, x_i, y_i),$$

where the dataset \mathcal{D} is divided in mini-batches $\mathcal{D} = \{D_1, \dots, D_K\}$

We perform a step over all the mini-batches and call this an epoch

Efficient computation of $\nabla \mathcal{L}_{\rm NN}$ is one of the critical point in deep learning

Forward problems

Constrain \hat{u}_{ν} to be solution to a given PDE

Introducing physical prior

Loss function: for a set of equation parameters θ and neural network u_{μ} $\mathcal{L}_{\text{PINN}}(\nu,\theta) \coloneqq \sum_{i=1}^{n_x} \sum_{j=1}^{n_t} |\mathcal{N}_{\theta}[u_{\nu}](t_j, x_i)|^2 + w_{ic} \sum_{i=1}^{n_x} |u_{\nu}(0, x_i) - u_0|^2$ $+ w_{bc} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} |\mathcal{B}[u_{\nu}](t_{j}, \delta x_{k}) - f(t_{j}, \delta x_{k})|^{2} + w_{obs} \sum_{k=1}^{\infty} |u_{l} - u_{\nu}(t_{l}, x_{l})|^{2}_{obs},$ $i = 1 \ k - 1$ $= \underbrace{\mathcal{L}_{dyn} + w_{bc}\mathcal{L}_{bc} + w_{ic}\mathcal{L}_{ic}}_{} + \underbrace{w_{obs}\mathcal{L}_{obs}}_{}$ statistical information physical prior

where

- $\{x_i, t_j, \delta x_k\}_{i,j,k}$ are collocation points drawn from $\Omega \times [0,T] \times \partial \Omega$
- $\{((t_l, x_l), u_l)\}_{l=1}^{n_{obs}}$ are noisy observations of u^* (possibly missing)
- w_{ic}, w_{bc}, w_{obs} are weights balancing the different terms

Introducing physical prior

 $\to \mathcal{L}_{\rm PINN}$ is even more highly non-convex and harder to optimize than $\mathcal{L}_{\rm NN}$

Graphical representation of a PINN ($w_{obs} = 0$) adapted from L. Lu et al. (2021)

Goal: for a given set of equation parameters θ , find a parametric function $u_{\hat{\nu}}$

```
\hat{\nu} \in \operatorname*{arg\,min}_{\nu} \mathcal{L}_{\mathrm{PINN}}(\nu, \theta)
```

We can distinguish 2 situations

- 1. PDE solver $(w_{obs} = 0)$ where PINNs are viewed as an alternative to standard numerical methods
- 2. Hybrid-modeling ($w_{\rm obs}>0$) where ${\cal L}_{\rm PINN}$ combines statistical information and physics prior

Goal: for a given set of equation parameters θ , find a parametric function $u_{\hat{\nu}}$

$$\hat{\nu} \in \operatorname*{arg\,min}_{\nu} \mathcal{L}_{\mathrm{PINN}}(\nu, \theta)$$

• compute the loss \rightarrow compute gradients w.r.t. the NN inputs, e.g.:

$$\sum_{x,t} |\mathcal{N}_{\theta}[u_{\nu}](t,x)|^{2} = \sum_{t,x} \left| \frac{\partial u_{\nu}}{\partial t}(t,x) - \Delta u_{\nu}(t,x) \right|^{2} = \sum_{t,x} \left| \frac{\partial u_{\nu}}{\partial t}(t,x) - \frac{\partial^{2} u_{\nu}}{\partial x_{1}^{2}}(t,x) - \frac{\partial^{2} u_{\nu}}{\partial x_{2}^{2}}(t,x) \right|^{2}$$

- stochastic optimization \rightarrow compute gradients w.r.t. ν
- \rightarrow Both tasks rely on automatic differentiation

Automatic Differentiation (AD) (Baydin et al. 2018)

- Numerical and exact way to compute the derivatives of a function
- Automatic differentiation \neq symbolic differentiation \neq numerical differentiation
- Particularly suitable for composition of elementary functions (like NNs): leverages chain rule & known derivatives
- Backpropagation Goodfellow et al. (2016) is the main AD algorithm
- Implemented in all ML libraries (tensorflow, PyTorch, JAX, etc.)

$$u_{\nu} \colon x \mapsto f_L \circ f_{L-1} \circ \cdots \circ f_0(x)$$
 with $f_l(x) = \sigma(w_l x + b_l)$

Let $h_{l+1} \coloneqq f_l(h_l)$, $h_0 \coloneqq x$ and $y \coloneqq h_{L+1} = u_{\nu}(x)$. We are interested in computing $\nabla_{x_k} y_{k'}, \forall k, k'$. Let us write the chain rule in the vectorial case. We follow the **computational graph**:

$$\underbrace{\nabla_{x_k} y_{k'}}_{1 \times 1} = \underbrace{\nabla_{h_{L+1}} y_{k'}}_{1 \times \dim y} \times \underbrace{\operatorname{Jac}_{h_L} f_L(h_L)}_{\dim y \times \dim h_L} \times \underbrace{\operatorname{Jac}_{h_{L-1}} f_{L-1}(h_{L-1})}_{\dim h_L \times \dim h_{L-1}} \times \cdots \times \underbrace{\operatorname{Jac}_{h_0} f_0(h_0)}_{\dim h_1 \times \dim x} \times \underbrace{\nabla_{x_k} h_0}_{\dim x \times 1}$$

 \rightarrow The same procedure is used for gradients with respect to ν \rightarrow There are at least 2 ways to parse the chain rule formula...

$$\nabla_{x_k} y = \left(\nabla_{h_{L+1}} y \times \left(\operatorname{Jac}_{h_L} f_L(h_L) \times \left(\operatorname{Jac}_{h_{L-1}} f_{L-1}(h_{L-1}) \times \dots \times \left(\operatorname{Jac}_{h_0} f_0(h_0) \times \nabla_{x_k} h_0 \right) \right) \right) \right)$$

- Right to left successive computations of the type $\underbrace{\operatorname{Jac}_{h_l}f_l(h_l)}_{\dim h_{l+1} \times h_l} \times \underbrace{\nabla_{x_k}h_l}_{\dim h_l \times 1}$
- This elementary operation is called a Jacobian-Vector Product in AD
- All the points where we need to evaluate the Jacobians are computed on the fly as we go down the computational graph (here, these are the h_l)

$$\nabla_{x_k} y = \left(\nabla_{h_{L+1}} y \times \left(\operatorname{Jac}_{h_L} f_L(h_L) \times \left(\operatorname{Jac}_{h_{L-1}} f_{L-1}(h_{L-1}) \times \cdots \times \left(\operatorname{Jac}_{h_0} f_0(h_0) \times \nabla_{x_k} h_0 \right) \right) \right) \right)$$

- JVPs hardcoded in AD libraries for all kinds of $f \rightarrow$ Jacobians are never explicitly computed
- Forward mode enables recovering one column at a time of the Jacobian ∇_xy → most efficient for tall Jacobians, i.e., differentiation of a function from ℝ^{dimx} → ℝ^{dimm}, dimy >> dimx

Reverse AD in a neural network

$$\nabla_{x}y_{k'} = \left(\left(\left(\left(\nabla_{h_{L+1}}y_{k'} \times \operatorname{Jac}_{h_{L}}f_{L}(h_{L}) \right) \times \operatorname{Jac}_{h_{L-1}}f_{L-1}(h_{L-1}) \right) \times \ldots \times \operatorname{Jac}_{h_{0}}f_{0}(h_{0}) \right) \times \nabla_{x}h_{0} \right)$$

- Left to right successive computations of the type $\underbrace{\nabla_{h_{l+1}}y_{k'}}_{\dim 1 \times h_{l+1}} \times \underbrace{\operatorname{Jac}_{h_l}f_l(h_l)}_{\dim h_{l+1} \times h_l}$
- This elementary operation is called a Vector-Jacobian Product in AD
- Reverse AD relies on a previous forward pass in the computational graph: we precompute and store all the points at which we will evaluate the Jacobians
- The popular backpropagation algorithm is a reverse AD algorithm

Reverse AD in a neural network

$$\nabla_{x}y_{k'} = \left(\left(\left(\left(\nabla_{h_{L+1}}y_{k'} \times \operatorname{Jac}_{h_{L}}f_{L}(h_{L}) \right) \times \operatorname{Jac}_{h_{L-1}}f_{L-1}(h_{L-1}) \right) \times \ldots \times \operatorname{Jac}_{h_{0}}f_{0}(h_{0}) \right) \times \nabla_{x}h_{0} \right)$$

- VJPs hardcoded in AD libraries for all kinds of f → Jacobians are never explicitly computed
- Reverse mode enables recovering one row at a time of the Jacobian
 ∇_xy → most efficient for large Jacobians, i.e., differentiation of a function from ℝ^{dimx} → ℝ^{dimy}, dimx >> dimy
- The popular backpropagation algorithm is a reverse AD algorithm

Research direction: improving learning

• Importance sampling of the collocation points

$$\int_{\Omega} |\mathcal{N}[u](x)|^2 \,\mathrm{d}x \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{q(x_i)} |\mathcal{N}[u](x_i)|^2, \quad x_i \stackrel{i.i.d.}{\sim} q.$$

 \rightarrow adaptive q charges regions of Ω with high residuals (Wu et al. 2023)

• Adaptive weights w_{obs} , w_{ic} and w_{bc} during learning (Xiang et al. 2022)

Research directions: theoretical analysis

- Results in the PDE solver case (Mishra et al. 2022)
- Results in the hybrid modeling case (Doumèche et al. 2023)
 →Regularization strategies to prevent over-fitting

$$\min_{\nu} \mathcal{L}_{\text{PINN}}(\nu) + \lambda \|\nu\|$$

 \rightarrow Sobolev regularization of the risk to have u_{ν} converging to the PDE solution

Research directions: metamodel learning

• Learn a function $\hat{u}_{\nu}(t, x, \theta)$ such that

$$\forall \theta, \quad \mathcal{N}_{\theta}[\hat{u}_{\nu}(\cdot, \cdot, \theta)](t, x) \approx 0$$

- Learn to solve many equations at once \rightarrow evaluation is cheap with NNs
- HyperPINNs (Avila Belbute-Peres et al. 2021) have been proposed for this task

$$\lambda \longrightarrow f_{h}(\lambda; \Theta_{h}) \longrightarrow \Theta_{m} - \frac{1}{2}$$

$$t, x \longrightarrow f_{m}(t, x; \Theta_{m}) \longrightarrow \hat{u}$$

from (Avila Belbute-Peres et al. 2021)

Illustration: metamodel for an advection diffusion PDE

• Consider the following PDE problem

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) = D\Delta u(t,x) + u(t,x)(r - u(t,x)), t \ge 0, x \in \Omega, \Omega = [0,50]^2\\ \frac{\partial u(t,x)}{\partial n}\Big|_{x \in \partial \Omega} = \nabla u(t,x) \cdot n = 0, t \ge 0, \text{Neumann condition},\\ u(0,x) = u_0(x), x \in \Omega \end{cases}$$

• The hyperparameters are \boldsymbol{D} and \boldsymbol{r}

4

• Train an HyperPINN to learn a function \hat{u}_{ν} such that $\forall (D,r) \in [0.05,1] \times [0.05,0.15], \quad \mathcal{N}_{(D,r)}[\hat{u}_{\nu}(\cdot,\cdot,D,r)](t,x) \approx 0$

Illustration: metamodel for an advection diffusion PDE

 $\hat{u}(t,x)$ estimated for D = 1, r = 0.15

 $\hat{u}(t,x)$ estimated for D = 0.05, r = 0.05

Research directions: reducing computational costs

- More efficient computation of high-order derivatives (Bettencourt et al. 2019; R. Li et al. 2024)
- Leveraging forward mode AD with Separable PINNs (Cho et al. 2024)

Inverse problems

In most applications, we are also interested in **estimating the equation** parameters $\hat{\theta}$ as well as an approximate solution $u_{\hat{\nu}}$. This leads to solve

$$(\hat{\nu}, \hat{\theta}) \in \operatorname*{arg\,min}_{\nu, \theta} \mathcal{L}_{\mathrm{PINN}}(\nu, \theta)$$

- The nature of the problem suggests an iterative optimization scheme (Raissi et al. 2019)
 - 1. $\hat{\nu}^{(t+1)} \in \operatorname{arg\,min}_{\nu} \mathcal{L}_{\text{PINN}}(\nu, \theta^{(t)})$
 - 2. $\hat{\theta}^{(t+1)} \in \arg\min_{\theta} \mathcal{L}_{\text{PINN}}(\nu^{(t+1)}, \theta)$

Toy example

- Toy example from the benchmark (Hao, Liu, et al. 2022)
- Consider the following PDE on $\Omega = [0, 1]^2$, I = [0, 1]:

$$\begin{cases} \frac{\partial}{\partial t}u(t,x,y) - \nabla(a(t,x,y)\nabla u(t,x,y)) = f(t,x,y), \\ f(t,x,y) = ((4\pi^2 - 1)\sin\pi x\sin\pi y + \pi^2(2\sin^2\pi x\sin^2\pi y - \cos^2\pi \sin^2\pi y - \sin^2\pi x\cos^2\pi y))e^{-t}, \text{ (source term).} \end{cases}$$

- Our goal is to learn both u(t, x, y) and a(t, x, y) for all $(x, y) \in \Omega^2, t \in I$
- The diffusion coefficient a is itself modeled by a NN

Toy example

 \rightarrow This corresponds to the analytical solution: $u(t, x, y) = e^{-t} \sin \pi x \sin \pi y$

General case: u^* is indirectly involved in some statistical model $Y \mid O$

- i) u^* solution of PDE_{θ^*} ,(Mecanistic model)ii) $Y \mid O \sim p(\cdot \mid O, u^*, \theta^*)$.(Statistical model)
- In (Roques 2013), the inference for θ is done in the Bayesian context by sampling from the posterior $p(\theta \mid Y) \propto p(Y \mid O, u^*, \alpha)\pi(\theta)$
- Computing the likelihood or posterior involves $u^\star \to \operatorname{numerous}$ calls a PDE solver
- Can we use PINNs to bypass the need of PDE solvers ?

Mechanistic-statistical models: toy example

• We have observed $\{((t_l, x_l), y_l)\}_{l=1}^{n_{obs}}$ forming the likelihood

$$\prod_{l=1}^{n_{obs}} p(y_l \mid (t_l, x_l), u^{\star}, D, r) = \prod_{l=1}^{n_{obs}} \mathcal{N}(y_l; u_{D,r}^{\star}(t_l, x_l), \sigma^2)$$

- with $\frac{\partial}{\partial t}u_{D,r}^{\star}(t,x) = D\Delta u_{D,r}^{\star}(t,x) + u_{D,r}^{\star}(t,x)(r-u_{D,r}^{\star}(t,x)), t \ge 0, x \in \Omega, \Omega = [0, 50]^2$
- Define the prior $\pi(D, r) \propto \mathbf{1}(0.05 \leq D \leq 1) \mathbf{1}(0.05 \leq r \leq 0.15)$
- We want to sample from the posterior p(D, r|y)

Mechanistic-statistical models: toy example

• Traditional MCMC approach (Roques 2013)

 \rightarrow solve the PDE for each new proposals (D,r)

- Potential PINN/MCMC approach
 - \rightarrow Make the effort to train PINN

 $\hat{u}_{\nu}(t, x, D, r), \forall (D, r) \in [0.05, 1] \times [0.05, 0.15]$

- \rightarrow Only need a forward pass in the PINN for each proposal (D,r)
- \rightarrow Orders of magnitude faster after once the network is trained...

Mechanistic-statistical models: in the real world

Observations from more complex noise models

 \to e.g. count data: observations are $\{((t_l,\omega_l),y_l)\}$ where $\omega_l\subset\Omega$ and the likelihood reads

$$\prod_{l=1}^{n_{obs}} p(y_l \mid (t_l, \omega_l), u^{\star}, D, r) = \prod_{l=1}^{n_{obs}} \mathcal{P}(y_l; \int_{\omega_l} u^{\star}_{D, r}(t_l, x) \mathrm{d}x)$$

Often, we have nested covariates (Soubeyrand et al. 2014)
 → e.g. a spatially varying reproduction rate r(x) which depends on the type of forest covering c(x) (data we have access to) through the logistic link:

$$r(x) = \frac{1}{1 + e^{\theta_0 + \theta_1 c(x) + \theta_2 c(x)^2}}$$

 \rightarrow We want to estimate the vector θ

Mechanistic-statistical models: in the real world

Mechanistic-statistical models: in the real world

From (Louvrier et al. 2020)

jinns

JAX + PINNs = jinns

- jinns is developped by Nicolas Jouvin (MIA, Paris-Saclay, INRAE) and me
- Past members of the project: Pierre Gloaguen (now at LMBA, Université Bretagne-Sud) and Achille Thin (now data scientist at Genesis)

JAX + PINNs = jinns

- jinns is developped by Nicolas Jouvin (MIA, Paris-Saclay, INRAE) and me
- Past members of the project: Pierre Gloaguen (now at LMBA, Université Bretagne-Sud) and Achille Thin (now data scientist at Genesis)
- Modulable to implement your own research ideas with PINNs
- Development is driven towards the resolution of inverse problems
- Optimized code thanks to JAX
- Integrates the JAX ecosystem: diffrax, equinox, blackjax, optax, ...

https://pypi.org/project/jinns/

JAX Python library (Bradbury et al. 2018):

- automatic differentiation: forward/backward AD, custom JVPs/VJPs, ...
- code vectorization and parallel computing: vmap, pmap, shardings, ...
- Just-In-Time compilation: <code>jax.numpy</code> \rightarrow <code>jaxpr</code> \rightarrow XLA

First define u_{ν}

- Helper functions for standard architectures
- Users can implement their own neural network architectures
- PINNs, HyperPINNs, Separable PINNs are implemented

28

Then define the space/time domain

- Controls the collocation points on the sets $\Omega, \ \partial \Omega$ and I = [0,T]
- DataGenerator objects will send batches of collocation points to the loss

It is also possible to send to the loss **batches of observations** and/or **batches of hyperparameters**

Working with jinns

Finally, define your loss, *i.e.* your PDE problem. A loss is composed of:

- DynamicLoss classes implementing \mathcal{L}_{dyn}
- Initial and boundary conditions
- Other user-defined constraints (normalization, Sobolev, ...)

Ĥ

Working with jinns

Finally, define your loss, *i.e.* your PDE problem. A loss is composed of:

- DynamicLoss classes implementing \mathcal{L}_{dyn}
- Initial and boundary conditions
- Other user-defined constraints (normalization, Sobolev, ...)

Working with jinns

- - Combines the PINN, the loss and all the DataGenerator objects
 - Handles optimization w.r.t. ν and/or θ (forward/inverse problems)

DeepXDE (L. Lu et al. 2021) the most popular library for research with PINNs

DeepXDE 💭 build passing docs passing 🗘 code quality A pypi package 1.11.0 downloads 335k Anaconda.org 1.11.0 downloads 284k license LGPL-2

- Wider scope than PINNs
- Several backends are being implemented (JAX, tensorflow, pytorch, ...)
- Slower than jinns
- No focus on inverse problems (see PINNacle (Hao, Liu, et al. 2022))

Conclusion

Conclusion

Pros:

- Fast by leveraging AD and modern ML libraries
- Flexible framework to incorporate physics prior into statistical learning
- Promising results on many classical problems, offers interesting research directions and new perspectives

Cons:

- Can fail to converge, requires hyper-parameter tuning
- Few theoretical results
- \rightarrow Long-term impact of PINNs is still unclear

References i

- F. de Avila Belbute-Peres, Y.-f. Chen, and F. Sha. HyperPINN: Learning parameterized differential equations with physics-informed hypernetworks. 2021. arXiv: 2111.01008 [cs.LG].
- [2] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. "Automatic differentiation in machine learning: a survey". In: Journal of machine learning research 18.153 (2018), pp. 1–43.
- [3] J. Bettencourt, M. J. Johnson, and D. Duvenaud. "Taylor-mode automatic differentiation for higher-order derivatives in JAX". In: Program Transformations for ML Workshop at NeurIPS 2019. 2019.
- J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
 S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy programs. Version 0.3.13. 2018. URL: http://github.com/google/jax.
- [5] J. Cho, S. Nam, H. Yang, S.-B. Yun, Y. Hong, and E. Park. "Separable physics-informed neural networks". In: Advances in Neural Information Processing Systems 36 (2024).
- [6] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. "Scientific machine learning through physics-informed neural networks: Where we are and what's next". In: *Journal of Scientific Computing* 92.3 (2022), p. 88.
- [7] M. Dissanayake and N. Phan-Thien. "Neural-network-based approximations for solving partial differential equations". In: communications in Numerical Methods in Engineering 10.3 (1994), pp. 195–201.
- [8] N. Doumèche, G. Biau, and C. Boyer. "Convergence and error analysis of PINNs". In: arXiv preprint arXiv:2305.01240 (2023).

References ii

- [9] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.
- [10] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu. "Physics-informed machine learning: A survey on problems, methods and applications". In: arXiv preprint arXiv:2211.08064 (2022).
- [11] Z. Hao, J. Yao, C. Su, H. Su, Z. Wang, F. Lu, Z. Xia, Y. Zhang, S. Liu, L. Lu, et al. "Pinnacle: A comprehensive benchmark of physics-informed neural networks for solving pdes". In: arXiv preprint arXiv:2306.08827 (2023).
- [12] K. Hornik, M. Stinchcombe, and H. White. "Multilayer feedforward networks are universal approximators". In: Neural networks 2.5 (1989), pp. 359–366.
- [13] P. J. Hossie, B. Laroche, T. Malou, L. Perrin, T. Saigre, and L. Sala. "Simulating interactions in microbial communities through Physics Informed Neural Networks: towards interaction estimation". In: (Feb. 2024). working paper or preprint. URL: https://hal.inrae.fr/hal-04440736.
- [14] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. "Physics-informed machine learning". In: *Nature Reviews Physics* 3.6 (2021), pp. 422–440.
- [15] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. "Gradient descent only converges to minimizers". In: Conference on learning theory. PMLR. 2016, pp. 1246–1257.
- [16] R. Li, H. Ye, D. Jiang, X. Wen, C. Wang, Z. Li, X. Li, D. He, J. Chen, W. Ren, et al. "A computational framework for neural network-based variational Monte Carlo with Forward Laplacian". In: Nature Machine Intelligence (2024), pp. 1–11.

References iii

- [17] J. Louvrier, J. Papaix, C. Duchamp, and O. Gimenez. "A mechanistic–statistical species distribution model to explain and forecast wolf (Canis lupus) colonization in South-Eastern France". In: Spatial Statistics 36 (2020), p. 100428.
- [18] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. "DeepXDE: A deep learning library for solving differential equations". In: SIAM review 63.1 (2021), pp. 208–228.
- [19] S. Mishra and R. Molinaro. "Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs". In: IMA Journal of Numerical Analysis 42.2 (2022), pp. 981–1022.
- [20] M. Raissi, P. Perdikaris, and G. E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: *Journal of Computational physics* 378 (2019), pp. 686–707.
- [21] M. Raissi, P. Perdikaris, and G. E. Karniadakis. "Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations". In: arXiv preprint arXiv:1711.10561 (2017).
- [22] L. Roques. "Modèles de réaction-diffusion pour l'écologie spatiale: Avec exercices dirigés". In: Modèles de réaction-diffusion pour l'écologie spatiale (2013), pp. 1–176.
- [23] S. Soubeyrand and L. Roques. "Parameter estimation for reaction-diffusion models of biological invasions". In: Population ecology 56 (2014), pp. 427–434.
- [24] S. Wang, S. Sankaran, H. Wang, and P. Perdikaris. "An expert's guide to training physics-informed neural networks". In: arXiv preprint arXiv:2308.08468 (2023).

References iv

- [25] S. Wang, Y. Teng, and P. Perdikaris. "Understanding and mitigating gradient pathologies in physics-informed neural networks". In: arXiv preprint arXiv:2001.04536 (2020).
- [26] C. Wu, M. Zhu, Q. Tan, Y. Kartha, and L. Lu. "A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks". In: Computer Methods in Applied Mechanics and Engineering 403 (2023), p. 115671.
- [27] Z. Xiang, W. Peng, X. Liu, and W. Yao. "Self-adaptive loss balanced Physics-informed neural networks". In: Neurocomputing 496 (2022), pp. 11–34.

Jacobian-vector product: example

Take a simple scalar activation function f: x → tanh(x). Its associated
 JVP is a function

$$(x, v) \mapsto \tanh'(x)v = (1 - x^2)v, \forall (x, v) \in \mathbb{R}^2$$

• Take the example of a linear layer function $f: x \mapsto wx + b, x \in \mathbb{R}^n, w \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Its associated JVP is a function

$$(x,v)\mapsto \frac{\mathrm{d}f}{\mathrm{d}x}v=wv, \forall (x,v)\in (\mathbb{R}^n)^2$$

• Remark that we expressed the JVPs as expression devoid of Jacobians. Composing the JVPs in forward AD is thus efficient