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Introduction Methods Results Conclusion

Electricity and climate studies

Climate extremes, risks : impact on
agriculture, health, energy production
and demand

Climate change : impacts frequency
and intensity of spatial = multivariate
meteorological hazards

In particular, both on electricity
generation and system balance

Studies are necessary and we use models to do this.
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Physical climate modelling

Climate models grid sizes

Used in RCP modelling (regional
models)

Complex phenomena, well-known
from physics

BUT

Computationally expensive

Not adapted to extremes
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Why stochastic modelling

Observations

Stochastic model
Temperature/weather variable(s) = 

Model(time, parameters, noise)

Simulations

Simulations = same statistical properties as the observations

Reproduce the properties important to the user (e.g. heat waves)

Computationally efficient

Can be used to sample the distribution, including extremes

Can be used with real data or debiased climate model output

”Stochastic Weather Generator”

Cognot Caroline Spatio-temporal weather generator for the temperature over France 4 / 22



Introduction Methods Results Conclusion

A temperature generator

Existing work :

Single-site models : models for n ≥ 1 variables X 1(t), ...,X n(t)

Multi-site models, but viewing sites as many different variables : models
for n ≥ 1 variables at nS ≥ 1 sites X 1

1 (t), ...,X
n
1 (t), ...,X

1
nS (t), ...,X

n
nS (t)

Spatial models, focused mostly on precipitations : models for n ≥ 1
variables on a spatial extent {s ∈ D} X 1(s, t), ...,X n(s, t)

My objective :

Build a SWG for the
temperature, reproducing the
spatial and temporal
structure and allowing for
sampling in the climate
variability.
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Decomposition in trend and seasonality1

Objective : separate deterministic from stochastic
components. Deterministic = climate, stochastic =
climate variability.
For each site s and time t, we decompose the
temperature X (s, t) :

X (s, t) = Tm(s, t)+Sm(s, t)+Tσ(s, t)Sσ(s, t)Z(s, t)

where

Tm(s, .) is the long-term mean trend;

Tσ(s, .) is the long-term variance trend ;

1Hoang 2010.
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where

Tm(s, .) is the long-term mean trend;

Tσ(s, .) is the long-term variance trend ;

Sm(s, .) is the mean seasonality;

Sσ(s, .) is the variance seasonality;

Sm or σ(s, t) = β1(s) +

dm or σ∑
i=1

[
β2i (s)cos

(
2iπt

365

)
+ β2i+1(s)sin

(
2iπt

365

)]
1Hoang 2010.
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X (s, t) = Tm(s, t)+Sm(s, t)+Tσ(s, t)Sσ(s, t)Z(s, t)

where

Tm(s, .) is the long-term mean trend;

Tσ(s, .) is the long-term variance trend ;

Sm(s, .) is the mean seasonality;

Sσ(s, .) is the variance seasonality;

Z(s, .) are the residuals at site s. They have
variance 1 and mean 0.

1Hoang 2010.
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Example : s fixed, Toulouse

X (s, t) = Tm(s, t) + Sm(s, t) + Tσ(s, t)Sσ(s, t)Z(s, t)
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Decomposition : spatial extension

Objective :
Extend decomposition
parameters from discrete to
continuous
D is a high resolution grid
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Decomposition : spatial extension

Objective :
Extend decomposition
parameters from discrete to
continuous
D is a high resolution grid

For trends : Trends are ”smooth” in time and slow-varying : reasonable to
use constant weights, using Inverse Distance Weighting (IDW)
interpolation −→ gives many maps of slow-varying mean temperature and
standard deviation.

u(s) =

∑n
i=1 wi (s)ui∑n
i=1 wi (s)

,with wi (s) =
1

(d(si , s))p
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Decomposition : spatial extension

Objective :
Extend decomposition
parameters from discrete to
continuous
D is a high resolution grid

For trends : Trends are ”smooth” in time and slow-varying : reasonable to
use constant weights, using Inverse Distance Weighting (IDW)
interpolation −→ gives many maps of slow-varying mean temperature and
standard deviation.

For seasonality : kriging on the coefficients −→ 2 maps of spatial
coefficients, to multiply by corresponding sines and cosines to obtain the
cycle.
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Model of the residuals

Recall : decomposition

X (s, t) = Tm(s, t) + Sm(s, t) + Tσ(s, t)Sσ(s, t)Z(s,t)

We want to model the stochastic part Z(s, t), which is already supposed to be
zero-mean, with variance close to 1. :

Proposal : 2nd-order spatio-temporal model

A 2nd-order spatiotemporal model Z(s, t) is defined by its 2 components :

1. The mean function E[Z(s, t)] = µ(s, t)= 0 for us

2. The covariance function C(s1, s2, t1, t2) = Cov [Z(s1, t1),Z(s2, t2)]
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Model of the residuals

We want to model the stochastic part Z(s, t), which is already supposed to be
zero-mean, with variance close to 1. :

Proposal : 2nd-order stationnary isotropic spatio-temporal model

A 2nd-order stationnary isotropic spatiotemporal model Z(s, t) is defined by its
2 components :

1. The mean function E[Z(s, t)] = µ(s, t)= 0 for us

2. The covariance function C(s1, s2, t1, t2) = C(||s2 − s1||, t2 − t1)

This reduces our problem to fitting a covariance function

C : R+ × R −→ R
(h, u) 7−→ C(h, u)

Cognot Caroline Spatio-temporal weather generator for the temperature over France 9 / 22



Introduction Methods Results Conclusion

Model of the residuals : Possible covariance functions

Separable space-time functions : C(h, u) = CS(h)CT (u) :

no space-time
interactions !

Non - separable functions : many classes of Gneiting type2.
For ”nice” ϕ(t) and ψ(t)

C(h, u) =
σ2

ψ(|u|2)d/2
ϕ

(
||h||2

ψ(|u|2)

)
is a covariance function. An usual ψ(t) is of the form (atα +1)β ; ϕ(t) can
be covariance kernels.

Matérn kernel : C(h, u) = σ2

(αu2a+1)b
M
(

h√
αu2a+1

b ; r ; ν

)
In practice, multiplied by a purely temporal covariance function for the
Gneiting-Matérn class :

Gneiting-Matérn covariance function

C(h, u) =
σ2

(αu2a + 1)b+δ
M

(
h

√
αu2a + 1

b
; r ; ν

)

2Gneiting 2002.
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Model of the residuals : Parameter estimation

Gneiting-Matérn covariance function

C(h, u) =
σ2

(αu2a + 1)b+δ
M

(
h

√
αu2a + 1

b
; r ; ν

)
−→ 7 parameters.

log-likelihood : for (X1, ...,Xn) ∼ N (0,Σ)

ℓ(x , θ) = log(f (X1 = x1, ...,Xn = xn))

= −1

2
log(|Σ|)− 1

2
((x1...xn)Σ

−1(x1...xn)
T )

Here, n = 41× 365 for a year of data ! Inversion is not recommended.
Composite pairwise log-likelihood :

ℓC (x , θ) =
∑

pairs i,j

log(f (Xi = xi ,Xj = xj))

=
∑

pairs i,j

(−1

2
log

∣∣∣∣σ2 Σij

Σij σ2

∣∣∣∣− 1

2
((xi , xj)

(
σ2 Σij

Σij σ2

)−1

(xi , xj)
T ))
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Outline of the model
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Simulation methods for the Gaussian field

Naive approach : simulate from multivariate Gaussian covariance matrix

.
Not feasible for large space and time grid : ok for 40 points in space,
but not for 1000.

A bit more refined : simulate all spatial points for each day t from
previous l days using Gaussian properties and stationnarity : for Xi the
vector at all points in space at time i , there are matrices A,B,C such that

X1

X2

...
Xl

 ∼ N (0,A)

∀t > ℓ, Xt |

 X1

...
Xt−1

 = Xt |

Xt−ℓ

...
Xt−1

 ∼ N

B

Xt−ℓ

...
Xt−1

 ,C


A specific algorithm for Gneiting-type covariance functions : use the
spectral algorithm3

3Allard et al. 2020.
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Decomposition : trends

Choice of presented results : same date each year, but there is no
monotonicity (see Toulouse result earlier, especially for the variance)

Trends show expected French climate
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Decomposition : seasonality of the mean

Recall : Seasonality

Sm or σ(s, t) = β1(s) +
∑dm or σ

i=1

[
β2i (s)cos

(
2iπt
365

)
+ β2i+1(s)sin

(
2iπt
365

)]

Different ”frequency” give different maps

Points out different climates

What could be useful : instead of A cos(2kπt/365) + B sin(2kπt/365),
have C cos(2kπt/365 + Φ) can give more temporal insight

Seasonality in variance is less interesting to show
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Model of the residuals : estimated parameters

Recall : Gneiting-Matérn covariance function

C(h, u) =
σ2

(αu2a + 1)b+δ
M

(
h

√
αu2a + 1

b
; r ; ν

)

Grid search for b in [0, 1] −→ maximum of likelihood for 1.

Spatial range parameter stayed at initial value : probable redundancy with
α, a, b inside the Matérn kernel

Winter and summer have different ν (smoothness parameter)
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Validation

Idea : Compute indicators from the observations and compare with the same
indicators from many simulations. The model is adequate if the observed
values are in the range of the simulations.
Indicators of good fit :

Pairwise correlation between pairs of stations

Pairwise conditional threshold exceedance
For every pair of stations i , j , define

pα
i,j = P(Xi > qα(i)|Xj > qα(j))

p̂α
i,j =

∑Nt
t=1 1Xi>qα(i)∩Xj>qα(j)∑Nt

t=1 1Xj>qα(j)

.

With inverted signs in the case of low quantiles.

Lagged temporal auto-correlation
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Validation : simulation at the fitting points
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Validation : simulation at the fitting points
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Simulation on a grid : what it looks like

180 days of simulation = 150s (spectral method, can be improved) or 10s
(conditionnal iterative method, but with additional time for matrix creation)
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Simulation on a grid : variograms

Variograms : γ(h, u) = 1
2
Var(Z(s + h, t + u)− Z(s, t))

The theoretical model is close to the observations

The simulations are close to the model (the methods worked)
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Conclusion

What is done :

A model for temperature that takes into account spatial structure

Results : spatial correlation well reproduced, extremal dependance not so
much (but not so bad). May need refining.

What I want to do next :

Compare simulations on a grid to EOBS dataset (same grid)

Compare interpolated decomposition with exact one

Use this model with a precipitation model
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