Spatio-temporal weather generator for the temperature over France

Présentation au séminaire de statistiques de Rochebrune

Caroline Cognot (MIA-PS & EDF) Supervisors : Liliane Bel (MIA-PS) et Sylvie Parey (EDF)

Methods 00000000 Results 00000000 Conclusion

Electricity and climate studies

- Climate extremes, risks : impact on agriculture, health, energy production and demand
- Climate change : impacts frequency and intensity of spatial = multivariate meteorological hazards
- In particular, both on electricity generation and system balance

Studies are necessary and we use models to do this.

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

Introduction	Methods	Results	
○●○○	00000000	00000000	
Physical climate mode	lling		

Climate models grid sizes

- Used in RCP modelling (regional models)
- Complex phenomena, well-known from physics

BUT

- Computationally expensive
- Not adapted to extremes

roduction	Methods 0000000	Results 0000000	
/hu ata ahaatia	na a dallin m		

- Simulations = same statistical properties as the observations
- Reproduce the properties important to the user (e.g. heat waves)
- Computationally efficient
- Can be used to sample the distribution, including extremes
- Can be used with real data or debiased climate model output

"Stochastic Weather Generator"

Cognot Caroline Spatio-temporal weather generator for the temperature over France

Introduction	Methods	Results	
000●	00000000	0000000	
A temperature generat	or		

Existing work :

- Single-site models : models for $n \ge 1$ variables $X^1(t), ..., X^n(t)$
- Multi-site models, but viewing sites as many different variables : models for $n \ge 1$ variables at $n_S \ge 1$ sites $X_1^1(t), ..., X_1^n(t), ..., X_{n_S}^1(t), ..., X_{n_S}^n(t)$
- Spatial models, focused mostly on precipitations : models for $n \ge 1$ variables on a spatial extent $\{s \in D\} X^1(s, t), ..., X^n(s, t)$

My objective :

Build a SWG for the temperature, reproducing the spatial and temporal structure and allowing for sampling in the climate variability.

Objective : separate deterministic from stochastic components. Deterministic = climate, stochastic = climate variability. For each site *s* and time *t*, we decompose the temperature X(s, t) :

$$X(s,t) = T_m(s,t) + S_m(s,t) + T_{\sigma}(s,t)S_{\sigma}(s,t)Z(s,t)$$

where

- $T_m(s, .)$ is the long-term mean trend;
- $T_{\sigma}(s,.)$ is the long-term variance trend ;

¹Hoang 2010.

Cognot Caroline

Methods

Results 00000000 Conclusion

Decomposition in trend and seasonality¹

Objective : separate deterministic from stochastic components. Deterministic = climate, stochastic = climate variability.

For each site s and time t, we decompose the temperature X(s, t):

 $X(s,t) = T_m(s,t) + S_m(s,t) + T_\sigma(s,t)S_\sigma(s,t)Z(s,t)$

where

- $T_m(s, .)$ is the long-term mean trend;
- *T*_σ(*s*, .) is the long-term variance trend ;
- $S_m(s, .)$ is the mean seasonality;
- S_σ(s,.) is the variance seasonality;

$$S_{m \text{ or } \sigma}(s,t) = \beta_1(s) + \sum_{i=1}^{d_{m \text{ or } \sigma}} \left[\beta_{2i}(s) \cos\left(\frac{2i\pi t}{365}\right) + \beta_{2i+1}(s) \sin\left(\frac{2i\pi t}{365}\right) \right]$$

¹Hoang 2010.

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

 $\label{eq:objective:separate deterministic from stochastic components. Deterministic = climate, stochastic = climate variability.$

For each site s and time t, we decompose the temperature X(s, t):

 $X(s,t) = T_m(s,t) + S_m(s,t) + T_\sigma(s,t)S_\sigma(s,t)Z(s,t)$

where

- $T_m(s,.)$ is the long-term mean trend;
- *T*_σ(*s*, .) is the long-term variance trend ;
- $S_m(s, .)$ is the mean seasonality;
- $S_{\sigma}(s,.)$ is the variance seasonality;
- Z(s, .) are the residuals at site s. They have variance 1 and mean 0.

¹Hoang 2010.

Cognot Caroline

Methods 00000000

Results 0000000C Conclusior

Decomposition : spatial extension

Objective : Extend decomposition parameters from discrete to continuous \mathcal{D} is a high resolution grid

 $T_m(s,t), s \in \mathcal{D}$

 $T_{\sigma}(s,t), s \in \mathcal{D}$

 $s \in \mathcal{D}$

• For trends : Trends are "smooth" in time and slow-varying : reasonable to use constant weights, using Inverse Distance Weighting (IDW) interpolation \longrightarrow gives many maps of slow-varying mean temperature and standard deviation.

continuous

 \mathcal{D} is a high resolution grid

$$u(s) = rac{\sum_{i=1}^{n} w_i(s) u_i}{\sum_{i=1}^{n} w_i(s)}, ext{ with } w_i(s) = rac{1}{(d(s_i,s))^p}$$

 $T_m(s_1,t),\ldots,T_m(s_N,t)$

 $T_{\sigma}(s_1, t), \ldots, T_{\sigma}(s_N, t)$

 $T_m(s,t), s \in \mathcal{D}$

 $T_{\sigma}(s,t),s\in\mathcal{D}$

 $\dots T_m(s_N, t)$

 $T_{\sigma}(s_1, t), \ldots, T_{\sigma}(s_N, t)$

 $s \in \mathcal{D}$

• For trends : Trends are "smooth" in time and slow-varying : reasonable to use constant weights, using Inverse Distance Weighting (IDW) interpolation \longrightarrow gives many maps of slow-varying mean temperature and standard deviation.

continuous

 \mathcal{D} is a high resolution grid

• For seasonality : kriging on the coefficients $\longrightarrow 2$ maps of spatial coefficients, to multiply by corresponding sines and cosines to obtain the cycle.

Introduction	Methods	Results	
0000	○○○●○○○○	0000000	
Model of the residuals			

Recall : decomposition

$$X(s,t) = T_m(s,t) + S_m(s,t) + T_\sigma(s,t)S_\sigma(s,t)\mathbf{Z}(s,t)$$

We want to model the stochastic part Z(s, t), which is already supposed to be zero-mean, with variance close to 1. :

Proposal : 2nd-order spatio-temporal model

A 2nd-order spatiotemporal model $Z(\mathbf{s}, t)$ is defined by its 2 components :

- 1. The mean function $\mathbb{E}[Z(\mathbf{s},t)] = \mu(\mathbf{s},t) = 0$ for us
- 2. The covariance function $C(\mathbf{s}_1, \mathbf{s}_2, t_1, t_2) = Cov[Z(\mathbf{s}_1, t_1), Z(\mathbf{s}_2, t_2)]$

Introduction	Methods	Results	
0000	○○○●○○○○	00000000	
Model of the residuals			

Recall : decomposition

 $X(s,t) = T_m(s,t) + S_m(s,t) + T_\sigma(s,t)S_\sigma(s,t)\mathbf{Z}(s,t)$

We want to model the stochastic part Z(s, t), which is already supposed to be zero-mean, with variance close to 1. :

Proposal : 2nd-order stationnary spatio-temporal model

A 2nd-order stationnary spatiotemporal model $Z(\mathbf{s}, t)$ is defined by its 2 components :

- 1. The mean function $\mathbb{E}[Z(\mathbf{s},t)] = \mu(\mathbf{s},t) = 0$ for us
- 2. The covariance function $C(s_1, s_2, t_1, t_2) = C(s_2 s_1, t_2 t_1)$

ntroduction	Methods	Results	
2000	○○●○○○○	00000000	
Model of the residuals			

We want to model the stochastic part Z(s, t), which is already supposed to be zero-mean, with variance close to 1. :

Proposal : 2nd-order stationnary isotropic spatio-temporal model

A 2nd-order stationnary isotropic spatiotemporal model $Z(\mathbf{s}, t)$ is defined by its 2 components :

- 1. The mean function $\mathbb{E}[Z(\mathbf{s},t)] = \mu(\mathbf{s},t) = 0$ for us
- 2. The covariance function $C(\mathbf{s}_1, \mathbf{s}_2, t_1, t_2) = C(||\mathbf{s}_2 \mathbf{s}_1||, t_2 t_1)$

This reduces our problem to fitting a covariance function

$$C: \mathbb{R}^+ \times \mathbb{R} \longrightarrow \mathbb{R}$$

 $(h, u) \longmapsto C(h, u)$

• Separable space-time functions : $C(h, u) = C_S(h)C_T(u)$:

²Gneiting 2002.

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

Separable space-time functions : C(h, u) = C_S(h)C_T(u) : no space-time interactions !

- Separable space-time functions : C(h, u) = C_S(h)C_T(u) : no space-time interactions !
- Non separable functions : many classes of Gneiting type². For "nice" $\phi(t)$ and $\psi(t)$

$$C(h,u) = \frac{\sigma^2}{\psi(|u|^2)^{d/2}} \phi\left(\frac{||h||^2}{\psi(|u|^2)}\right)$$

is a covariance function.

²Gneiting 2002. Cognot Caroline

- Separable space-time functions : C(h, u) = C_S(h)C_T(u) : no space-time interactions !
- Non separable functions : many classes of Gneiting type². For "nice" $\phi(t)$ and $\psi(t)$

$$C(h,u) = \frac{\sigma^2}{\psi(|u|^2)^{d/2}} \phi\left(\frac{||h||^2}{\psi(|u|^2)}\right)$$

is a covariance function. An usual $\psi(t)$ is of the form $(at^{\alpha}+1)^{\beta}$; $\phi(t)$ can be covariance kernels.

²Gneiting 2002. Cognot Caroline

- Separable space-time functions : C(h, u) = C_S(h)C_T(u) : no space-time interactions !
- Non separable functions : many classes of Gneiting type². For "nice" $\phi(t)$ and $\psi(t)$

$$C(h, u) = \frac{\sigma^2}{\psi(|u|^2)^{d/2}} \phi\left(\frac{||h||^2}{\psi(|u|^2)}\right)$$

is a covariance function. An usual $\psi(t)$ is of the form $(at^{\alpha}+1)^{\beta}$; $\phi(t)$ can be covariance kernels.

Matérn kernel :
$$C(h, u) = rac{\sigma^2}{(lpha u^{2a}+1)^b} \mathcal{M}\left(rac{h}{\sqrt{lpha u^{2a}+1}^b}; r;
u
ight)$$

²Gneiting 2002.

- Separable space-time functions : C(h, u) = C_S(h)C_T(u) : no space-time interactions !
- Non separable functions : many classes of Gneiting type². For "nice" $\phi(t)$ and $\psi(t)$

$$C(h, u) = \frac{\sigma^2}{\psi(|u|^2)^{d/2}} \phi\left(\frac{||h||^2}{\psi(|u|^2)}\right)$$

is a covariance function. An usual $\psi(t)$ is of the form $(at^{\alpha}+1)^{\beta}$; $\phi(t)$ can be covariance kernels.

Matérn kernel :
$$C(h, u) = \frac{\sigma^2}{(\alpha u^{2a} + 1)^b} \mathcal{M}\left(\frac{h}{\sqrt{\alpha u^{2a} + 1}}; r; \nu\right)$$

In practice, multiplied by a purely temporal covariance function for the Gneiting-Matérn class :

Gneiting-Matérn covariance function

$$C(h, u) = \frac{\sigma^2}{(\alpha u^{2s} + 1)^{b+\delta}} \mathcal{M}\left(\frac{h}{\sqrt{\alpha u^{2s} + 1}^b}; r; \nu\right)$$

²Gneiting 2002.

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

Intraduction Methods Occode oo Conclusion Occode Octo Octobe Octo

Gneiting-Matérn covariance function

$$C(h,u) = \frac{\sigma^2}{(\alpha u^{2s} + 1)^{b+\delta}} \mathcal{M}\left(\frac{h}{\sqrt{\alpha u^{2s} + 1}^b}; r; \nu\right) \longrightarrow 7 \text{ parameters.}$$

log-likelihood : for (X1, ..., Xn) $\sim \mathcal{N}(0, \Sigma)$

$$\ell(x, \theta) = log(f(X_1 = x_1, ..., X_n = x_n))$$

= $-\frac{1}{2}log(|\Sigma|) - \frac{1}{2}((x_1...x_n)\Sigma^{-1}(x_1...x_n)^T)$

Gneiting-Matérn covariance function

$$C(h, u) = \frac{\sigma^2}{(\alpha u^{2a} + 1)^{b+\delta}} \mathcal{M}\left(\frac{h}{\sqrt{\alpha u^{2a} + 1}^b}; r; \nu\right) \longrightarrow 7 \text{ parameters.}$$

log-likelihood : for
$$(X1, ..., Xn) \sim \mathcal{N}(0, \Sigma)$$

$$\ell(x, \theta) = \log(f(X1 = x1, ..., X_n = x_n))$$

$$= -\frac{1}{2}\log(|\Sigma|) - \frac{1}{2}((x_1...x_n)\Sigma^{-1}(x_1...x_n)^T)$$

Here, $n = 41 \times 365$ for a year of data ! Inversion is not recommended.

Gneiting-Matérn covariance function

$$C(h, u) = \frac{\sigma^2}{(\alpha u^{2a} + 1)^{b+\delta}} \mathcal{M}\left(\frac{h}{\sqrt{\alpha u^{2a} + 1}^b}; r; \nu\right) \longrightarrow 7 \text{ parameters.}$$

log-likelihood : for
$$(X1, ..., Xn) \sim \mathcal{N}(0, \Sigma)$$

$$\ell(x, \theta) = \log(f(X1 = x1, ..., X_n = x_n))$$

$$= -\frac{1}{2}\log(|\Sigma|) - \frac{1}{2}((x_1...x_n)\Sigma^{-1}(x_1...x_n)^T)$$

Here, $n = 41 \times 365$ for a year of data ! Inversion is not recommended. Composite pairwise log-likelihood :

$$\ell_{C}(x,\theta) = \sum_{\text{pairs } i,j} \log(f(X_{i} = x_{i}, X_{j} = x_{j}))$$
$$= \sum_{\text{pairs } i,j} \left(-\frac{1}{2}\log \begin{vmatrix} \sigma^{2} & \Sigma_{ij} \\ \Sigma_{ij} & \sigma^{2} \end{vmatrix} - \frac{1}{2}((x_{i}, x_{j}) \begin{pmatrix} \sigma^{2} & \Sigma_{ij} \\ \Sigma_{ij} & \sigma^{2} \end{pmatrix}^{-1}(x_{i}, x_{j})^{T}))$$

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

11 / 22

Gneiting-Matérn covariance function

$$C(h, u) = \frac{\sigma^2}{(\alpha u^{2a} + 1)^{b+\delta}} \mathcal{M}\left(\frac{h}{\sqrt{\alpha u^{2a} + 1}^b}; r; \nu\right) \longrightarrow 7 \text{ parameters.}$$

log-likelihood : for
$$(X1, ..., Xn) \sim \mathcal{N}(0, \Sigma)$$

$$\ell(x, \theta) = \log(f(X1 = x1, ..., X_n = x_n))$$

$$= -\frac{1}{2}\log(|\Sigma|) - \frac{1}{2}((x_1...x_n)\Sigma^{-1}(x_1...x_n)^T)$$

Here, $n = 41 \times 365$ for a year of data ! Inversion is not recommended. Composite pairwise log-likelihood :

$$\ell_{C}(x,\theta) = \sum_{\text{pairs } i,j} \log(f(X_{i} = x_{i}, X_{j} = x_{j}))$$
$$= \sum_{\text{pairs } i,j} \left(-\frac{1}{2}\log \begin{vmatrix} \sigma^{2} & \Sigma_{ij} \\ \Sigma_{ij} & \sigma^{2} \end{vmatrix} - \frac{1}{2}((x_{i}, x_{j}) \begin{pmatrix} \sigma^{2} & \Sigma_{ij} \\ \Sigma_{ij} & \sigma^{2} \end{pmatrix}^{-1}(x_{i}, x_{j})^{T}))$$

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

11 / 22

COO	Methods 0000000			Results 00000000		
Outline of th	e model					
Temperatur fitting site s ₁ ,,s ₁ Saisonality Trigonometric polynomials	$\beta_m(s_1), \dots, \beta_m(s_N)$ $\beta_{\sigma}(s_1), \dots, \beta_{\sigma}(s_N)$	Interpolation for $s \in \mathcal{D}$	$\beta_m(s)$ $\beta_\sigma(s)$	$s,s\in\mathcal{D}$ $s,s\in\mathcal{D}$	Simulations of temperature for $s \in \mathcal{D}$	ŗ
Trends LOESS regression	$egin{aligned} T_m(s_1,t),\ldots,T_m(s_N,t)\ T_\sigma(s_1,t),\ldots,T_\sigma(s_N,t) \end{aligned}$		$\xrightarrow{T_m(s,t)} T_{\sigma}(s,t)$	$(t), s \in \mathcal{D}$ $(t), s \in \mathcal{D}$	Simulation of	
Residuals	$Z(s_1,t),\ldots,Z(s_N,t)$ -	Gaussian model	Covariance $C(h, u)$	Field $orall (s,t), Z(s,t)$	Z on	
L					\mathcal{D}	

Introduction	Methods	Results	
0000	○○○○○○○●	00000000	
Simulation methods fo	r the Gaussian field		

• Naive approach : simulate from multivariate Gaussian covariance matrix

³Allard et al. 2020. Cognot Caroline Introduction 0000 Methods

Results 0000000C Conclusior

Simulation methods for the Gaussian field

• Naive approach : simulate from multivariate Gaussian covariance matrix . Not feasible for large space and time grid : ok for 40 points in space, but not for 1000.

- Naive approach : simulate from multivariate Gaussian covariance matrix . Not feasible for large space and time grid : ok for 40 points in space, but not for 1000.
- A bit more refined : simulate all spatial points for each day t from previous *I* days using Gaussian properties and stationnarity : for X_i the vector at all points in space at time *i*, there are matrices A, B, C such that

$$\begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_l \end{bmatrix} \sim \mathcal{N}(0, A)$$

$$\forall t > \ell, \ X_t | \begin{bmatrix} X_1 \\ \dots \\ X_{t-1} \end{bmatrix} = X_t | \begin{bmatrix} X_{t-\ell} \\ \dots \\ X_{t-1} \end{bmatrix} \sim \mathcal{N} \left(B \begin{bmatrix} X_{t-\ell} \\ \dots \\ X_{t-1} \end{bmatrix}, C \right)$$

³Allard et al. 2020.

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

- Naive approach : simulate from multivariate Gaussian covariance matrix . Not feasible for large space and time grid : ok for 40 points in space, but not for 1000.
- A bit more refined : simulate all spatial points for each day t from previous *I* days using Gaussian properties and stationnarity : for X_i the vector at all points in space at time *i*, there are matrices A, B, C such that

$$\begin{bmatrix} X_1 \\ X_2 \\ \cdots \\ X_l \end{bmatrix} \sim \mathcal{N}(0, A)$$

$$\forall t > \ell, \ X_t | \begin{bmatrix} X_1 \\ \dots \\ X_{t-1} \end{bmatrix} = X_t | \begin{bmatrix} X_{t-\ell} \\ \dots \\ X_{t-1} \end{bmatrix} \sim \mathcal{N} \left(B \begin{bmatrix} X_{t-\ell} \\ \dots \\ X_{t-1} \end{bmatrix}, C \right)$$

• A specific algorithm for Gneiting-type covariance functions : use the spectral algorithm³

³Allard et al. 2020.

Methods 00000000 Results

Conclusion

Decomposition : trends

- Choice of presented results : same date each year, but there is no monotonicity (see Toulouse result earlier, especially for the variance)
- Trends show expected French climate

Decomposition : seasonality of the mean

Recall : Seasonality

$$S_{m \text{ or } \sigma}(s,t) = \beta_1(s) + \sum_{i=1}^{d_{m \text{ or } \sigma}} \left[\beta_{2i}(s) \cos\left(\frac{2i\pi t}{365}\right) + \beta_{2i+1}(s) \sin\left(\frac{2i\pi t}{365}\right) \right]$$

- Different "frequency" give different maps
- Points out different climates
- What could be useful : instead of $A\cos(2k\pi t/365) + B\sin(2k\pi t/365)$, have $C\cos(2k\pi t/365 + \Phi)$ can give more temporal insight
- Seasonality in variance is less interesting to show

Introduction	Methods	Results	
0000	00000000	OO●00000	
Model of the residuals	• estimated parameters		

Recall : Gneiting-Matérn covariance function

$$C(h, u) = \frac{\sigma^2}{(\alpha u^{2a} + 1)^{b+\delta}} \mathcal{M}\left(\frac{h}{\sqrt{\alpha u^{2a} + 1}^b}; r; \nu\right)$$

Grid search for b in $[0,1] \longrightarrow$ maximum of likelihood for 1.

- Spatial range parameter stayed at initial value : probable redundancy with α , *a*, *b* inside the Matérn kernel
- Winter and summer have different ν (smoothness parameter)

Introduction	Methods	Results	
0000	00000000	○○○●○○○○	
Validation			

Idea : Compute indicators from the observations and compare with the same indicators from many simulations. The model is adequate if the observed values are in the range of the simulations.

Indicators of good fit :

- Pairwise correlation between pairs of stations
- **Pairwise conditional threshold exceedance** For every pair of stations *i*, *j*, define

$$p_{i,j}^lpha = P(X_i > q_lpha(i)|X_j > q_lpha(j))
onumber \ \hat{p}_{i,j}^lpha = rac{\sum_{t=1}^{N_t} \mathbf{1}_{X_i > q_lpha(i) \cap X_j > q_lpha(j)}{\sum_{t=1}^{N_t} \mathbf{1}_{X_j > q_lpha(j)}}.$$

With inverted signs in the case of low quantiles.

Lagged temporal auto-correlation

Introduction 0000		Methods 0000000	Results 00000000	
Validatio	on : simulation	at the fitting points		

 $P(Y_i > q_i^{obs} | Y_j > q_j^{obs})$ for high quantiles

Pairwise correlation between stations

Introduction	Methods	Results	
0000	00000000	○○○○○●○○	
Validation : simulation	at the fitting points		

Introduction	Methods	Results	
0000	00000000	○○○○○○●○	
Simulation on a grid ·	what it looks like		

Simulation 1

180 days of simulation = 150s (spectral method, can be improved) or 10s (conditionnal iterative method, but with additional time for matrix creation)

Variograms : $\gamma(h, u) = \frac{1}{2} Var(Z(s+h, t+u) - Z(s, t))$

- The theoretical model is close to the observations
- The simulations are close to the model (the methods worked)

Cognot Caroline

Spatio-temporal weather generator for the temperature over France

Conclusion

What is done :

- A model for temperature that takes into account spatial structure
- Results : spatial correlation well reproduced, extremal dependance not so much (but not so bad). May need refining.

What I want to do next :

- Compare simulations on a grid to EOBS dataset (same grid)
- Compare interpolated decomposition with exact one
- Use this model with a precipitation model