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Empirical Orthogonal Functions
First introduced by Lorenz (1956)

➠ What is the best representation for a
spatio-temporal field ?

➠ How to perform dimension-reduction on
a spatio-temporal field ?

➠ How to make projections?

- - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation based on a fishery case study.
Demersal fisheries of the Bay of Biscay.
Monthly maps from 2008 to 2018 (132 maps)
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Raw data and notations
Let’s denote a spatio-temporal process S = (S(x , t); x ∈ R2, t ∈ {t1, · · · , tp}).

The temporal average of S in denoted:

st(x) = 1
p

p∑
k=1

S(x , tk)

The time-centered space-time field:

S′ =
(
st1 − st , ..., stp − st) .

Then, S′ has the form:

S′ =


S ′(x1, t1) S ′(x1, t2) · · · S ′(x1, tp)
S ′(x2, t1) S ′(x2, t2) · · · S ′(x2, tp)

...
. . . . . .

...
S ′(xn, t1) S ′(xn, t2) · · · S ′(xn, tp)
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Raw data

(left) Montly spatial log-predictions log S(x, t) of the hierarchical model. (right) Monthly anomalies of the spatial predictions S∗(x, t). Each panel
corresponds to the average distribution of prediction of anomalies for a month over the period 2008 - 2018.
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Basics of EOF
The spatio-temporal field is decomposed so that:

S ′(x , t) =
r∑

m=1
pm(x) · αm(t)+ϵm(x , t)

with r the number of dimensions of the EOF (r ≤ min(n, p)), pm(x) the spatial
term of EOF and αm(t) the temporal term of EOF for dimension m.
ϵm(x , t) is an error term.

Constraints:
minimize E =

∑
m

∑
x

∑
y ϵm(x , t)

spatial terms and temporal terms are orthogonal

⟨pi(·); pj(·)⟩ = 0 i ̸= j

⟨αi(·);αj(·)⟩ = 0 i ̸= j
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Basics of EOF

This falls back to a diagonalisation issue through eigen-decomposition:

S′S′T = CS′ = UΛUT

or through singular value decomposition:

S′ = UΣVT (SVD)

CS′ is the covariance function of S′

U(n×r) contains the spatial factors (pm(x)),
Λ(r×r) contains the eigen values and Σ(r×r) contains the singular
values of S′.
These quantifies the percentage of variance captured by each dimension.
They are diagonal matrices with Λ = Σ2

V(p×r) contains the temporal loadings (αm(t))
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Illustration

(Top) Spatial factors for the two first dimensions of the EOF. (Bottom) Loadings for the two
first dimensions of the EOF. Blue dashed vertical lines corresponds to the month of January
for each year.

Interpretation:

U are spatial factors that capture
the variance of S′.

V are the temporal loadings that
relate S′ to the spatial factors in U.

When the loading of dimensions j
denoted Vj,· are high (resp. low) at
time step t then the process s′

t at
this time step follows the spatial
factor Uj,· (resp. −Uj,·).

B. Alglave, B. Dufee, S. Obakrim and J. Thorson EOF and derived methods March 2024 9 / 27



Multivariate EOF

1 Empirical Orthogonal Functions
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4 Are EOF truly orthogonal?
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B. Alglave, B. Dufee, S. Obakrim and J. Thorson EOF and derived methods March 2024 10 / 27



Multivariate EOF

1 Empirical Orthogonal Functions

2 Multivariate EOF

3 Constraining the EOF with an ancillary variable

4 Are EOF truly orthogonal?

5 Conclusion

B. Alglave, B. Dufee, S. Obakrim and J. Thorson EOF and derived methods March 2024 11 / 27



Multivariate EOF

Let us denote by k ∈ {1, · · · , s} the number of variables

S(k)(x , t) is the value of the space time process for the location x , the time t and
the variable k.

To build the multivariate spatio-temporal matrix to be diagonalized, there are two
options:

binding the matrices by rows. The matrix is of dimension (n · s) × p

S′(row)
multi =


S′(1)

S′(2)

· · ·
S′(s)


binding the matrix by columns. The matrix is of dimension n × (p · s).

S′(col)
multi =

(
S′(1) ; S′(2) ; · · · ; S′(s))
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Bind the matrices by rows

Multivariate EOF on the matrix S′(row)
multi . (Top) Factor maps for each species

and dimensions. (Bottom) Loadings for the two first dimensions.

➠ U is of dimension (n · s) × r and V is p × r
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Bind the matrices by columns

Multivariate EOF on the matrix S′(col)
multi . (Top) Factor maps for the two first

dimensions. (Bottom) Loadings of each species for the two first dimensions.

➠ U is of dimension n × r and V is (p · s) × r
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Constraining the EOF with an ancillary variable
Aim: “create new variables that are linear combinations of two (multivariate) data
sets such that the correlations between these new variables are maximized”
(Wickle et al., 2019).

Let’s consider two spatio-temporal variables S(1)(x , t) and S(2)(x , t).

Now consider two new variables that are combinations of S(1)(x , t) and S(2)(x , t)

ak(tj) =
n∑

i=1
ξikS(1)(xi ; tj) = ξ′

ks(1)
tj

bk(tj) =
m∑

ℓ=1
ψℓkS(2)(rℓ; tj) = ψ′

ks(1)
tj

The weights (i.e. the kth canonical correlation) are the correlation between ak and
bk with k ∈ {1, · · · ,min{n,m}}:

rk = corr(ak ,bk) = cov(ak ,bk)√
var(ak)

√
var(bk)
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Constraining the EOF with an ancillary variable

The correlation takes the form:

rk = ξ′
kCS1S2ψk

(ξ′
kCS1ξk)1/2(ψ′

kCS2ψk)1/2

CS1 and CS2 are covariance matrices of dimension m × m and n × n

CS1S2 is the covariance matrix between S(1) and S(2) with dimension m × n.

The first pair of canonical variable corresponds to the weights ξ1 and ψ1 that
maximize r1.

interpretation:
The time series of the first few canonical variables (a1 and b1) typically match up
fairly closely (they maximize correlation r1)

The spatial patterns (the weights ξ1 and ψ1) show the areas in space that are
most responsible for the high correlations.
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Results of the canonical correlation analysis. (Top left) Canonical vectors ξ1 that maximise correlation between ak and bk . (Top right) Correlation matrix
between the first time series of the EOF U·,1, the EOF time series in the CCA a1 and the ancillary variable. (Bottom) Comparison of the EOF variables
with the ancillary variable and the CCA variables with the ancillary variable. These time series are standardized.
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Are EOF truly orthogonal?
EOFs are statistically orthogonal i.e. for i ̸= j , {ui ,uj} = 0

Bu they are not spatially orthogonal i.e. the cross-covariance of the different EOF
maps is not necessarily 0.

EOM consist in a two step analysis:

perform an EOF on S′ → obtain statistically decorrelated plans

compute the variogram and the cross-variogram of U for a specific ditance r
that we denote Γr of dimension (p × p).

Γr = UeomΣeomVT
eom

Plans are ordered by increasing variance explained in S′

pk =
tr

(
CŜk

)
tr (CS)

where pk is the proportion of variance explained by factor k and Ŝk is the projection of S in the space of the
EOM.
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(Top) Spatial factors obtained by EOM for the two first dimensions. (Bottom) Temporal loadings for the first two dimensions.
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Conclusion: some bibliographic metrics
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Infering loading factors from sparse data
EOF are mainly applied in climate science. . .
but progressively being transferred to other fields of applications

➠ In ecology, EOF must be computed from sparse data (VAST, Jim Thorson)

For instance, we could consider a hierarchical model where the latent field take the
form:

log(S(x , t)) = β(t) + ω(x) +
Nf∑

f =1

λ(t, f )ϵ(x , f )

where f are the dimension of the EOF with Nf dimensions, ω ∼ MG(O, Σω) and ϵ ∼ MG(O, Σϵ).
λ(t, f ) are the loadings and ϵ(x , g) are the EOF.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

and the observations are zero-inflated and takes the form:

Pr(yi = Y ) = { 1 − pi if yi = 0
pi × L(yi ; log S(xi , ti ); σ2) if yi > 0

Where Y is an observations as random variable and yi is the realized observation. pi is the probability to
obtain a positive observation. L is the probability of the positive observations.
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Take home message

EOF and EOM provide patterns that capture variance of a spatio-temporal dataset
while being orthogonal.

EOF can be extended to several variables.

EOF can be constrained with an ancillary variable through CCA.

EOF maps are only statistically orthogonal.

EOM maps are spatially orthogonal ➠ loadings are also harder to interpret.

EOM could be realized on time steps, not on locations → but
not both at the same time.

Open questions:
How to perform dimension-reduction and take into account both spatial and
temporal correlation?

How to perform dimension reduction without the need if svd?
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