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High-dimensional linear regression

Y = Xβ + ε, ε ∼ Nn(0, σ2In)

where Y ∈ Rn, X ∈ Mn×p(R), β ∈ Rp.
p = dim(β) → ∞ as the sample size n → ∞.

High-dimensional setting: inference possible only if data are concentrated
around some low-dimensional structure.
Sparsity: only a few coordinates of the regression vector β are nonzero.
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Penalised approach

Most non-Bayesian approaches use penalty functions to encourage sparsity.
Example: ℓ1-penalty

β̂LASSO
λ = argmin

β∈Rp

{
||Y − Xβ||2 + λ||β||1

}

Bayesian framework: ℓ1 and ℓ2 regularisation methods are equivalent to
assigning Laplace or Gaussian priors respectively on the regression vector.
The solution to the corresponding optimisation problem precisely represents the
mode of the posterior distribution.
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Spike-and-slab priors

Mixture spike-and-slab priors offer a separate control over signal and noise
coefficients.

For each component of regression parameter:

π(βj) = (1 − r)ϕ0(βj) − rϕ1(βj)

where ϕ0 is a density highly concentrated at 0, ϕ1 is a density allowing
intermediate and large values of βj , and r is a small parameter inducing sparsity in
the mixture.
Examples of mixture spike-and-slab priors: Dirac-Laplace, Laplace-Laplace,
Gaussian-Gaussian, etc...
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Selection consistency and Posterior contraction

Selection property

Selection consistency: the posterior
probability of the true model converges to 1

inf
β0

E0
[
Π(β : Sβ = S0|Y (n))

]
−→
n→∞

1

Estimation property

Posterior contraction: ability of the posterior
distribution to recover the true model from the
data

sup
θ0

E0

[
Π
(
θ : dn(θ, θ0) > Cϵn

∣∣∣∣Y (n)
)]

−→
n→∞

0

with ϵn −→
n→∞

0.
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State of the art
✤ With known variance:

Reference Model Spike Slab Result
Castillo et al. (2015) LR Dirac Laplace Consistency

Ročková and George (2018) LR Laplace Laplace Contraction

✤ With unknown variance:

Reference Model Spike Slab Result
Narisetty and He (2014) LR Gaussian Gaussian Consistency
Jiang and Sun (2019) LR Generic Generic Consistency

Ning et al. (2020) Multivariate LR Dirac Laplace Consistency
Jeong and Ghosal (2021a) GLMs Dirac Laplace Contraction
Jeong and Ghosal (2021b) LR with nuisance Dirac Laplace Consistency

Shen and Deshpande (2022) Multivariate LR Laplace Laplace Contraction

where LR = Linear Regression.
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Framework: repeated measurement data
✤ Mixed-effects models: analyse observations collected repeatedly on several individuals.

✤ Same overall behaviour but with individual variations.
✤ Non-linear growth.
✤ Are these variations due to known characteristics?

▶ E.g.: growing conditions, genetic markers, ...
Marion Naveau Posterior contraction in sparse non-linear marginal mixed model 10 / 21



Introduction Model Theoretical guarantees Perspectives

Non-linear marginal mixed model

For 1 ≤ i ≤ n,

Yi = fi(Xiβ) + Ziξi + ε∗
i , ε∗

i ∼ Nni (0, σ2Ini ), ξi ∼ Nq(0, Γ),

Yi ∈ Rni , ni ∈ {1, . . . , Jn}, where ni and Jn can grow with n.

fi(x) = (f (x ; ti ,1), . . . , f (x ; ti ,ni ))⊤, for f non-linear regression function.
Xi ∈ Mq×p, Zi ∈ Mni ×q, q fixed small and p >> n.
We assumed that σ2 is known.
Population parameter: θ = (β, Γ), β ∈ Rp, Γ ∈ Mq×q.

We assume that n independent observations Y (n) = (Yi)1≤i≤n ∈ RN , where
N =

∑n
i=1 ni , has been generated from this model for a given sparse β0 and a given

Γ0. The expectation under these true parameters is denoted E0.
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Sparse non-linear marginal mixed model
This model is called "marginal" because the marginal expected value and the
covariance matrix of the response variable Yi are given explicitly through the
population parameter vector: E[Yi ] = fi(Xiβ), Cov(Yi) = ZiΓZ⊤

i + σ2Idni .

The model can be written compactly as:
Yi ∼ N (fi(Xiβ),∆Γ,i), where ∆Γ,i = ZiΓZ⊤

i + σ2Idni .

Priors:
Spike-and-slab Dirac-Laplace on (S, β): (S, β) 7→ πp(s)(p

s
) gS(βS)δ0(βSc ),

Inverse-Wishart(Σ, d) prior on Γ: π(Γ) ∝ |Γ|−(d+q+1)/2 exp
(
− 1

2 Tr(ΣΓ−1)
)
.

Goal
Obtain posterior contraction result in such model for the parameters β and Γ under
spike-and-slab Dirac-Laplace prior.
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Assumptions

For some constants A1, A2, A3, A4 > 0,

A1p−A3πp(s − 1) ≤ πp(s) ≤ A2p−A4πp(s − 1), s = 1, . . . p.

▶ Example: β1, . . . βp ∼ (1 − r)δ0 + rL, πp = Bin(p, r) where r ∼ Beta(1, pu), u > 1.

f is assumed to be Lipschitzienne:

∀x , y ∈ Rq,∀t ∈ R, ||f (x , t) − f (y , t)||2 ≤ K ||x − y ||2.

We denote by Kn =
√

K 2Jn.
▶ Example: Log-Gompertz model yij = β1 + bi − Ce−β2tij + εij

gS(βS) =
∏

j∈S
λ

2 exp(−λ|βj |), with ||X ||∗Kn
L1pL2

≤ λ ≤ L3||X ||∗Kn√
n

, for some constants L1, L2,

L3 > 0, where ||X ||∗ = maxj ||X·j ||2.
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Assumptions on true parameters

s0 > 0, s0 log(p) = o(n),

Γ0 ∈ H0, with H0 = {Γ : 1 ≲ ρmin(Γ) ≤ ρmax (Γ) ≲ 1}

β0 ∈ B0, with B0 =
{
β : ||β||∞ ≲ λ−1 log(p)

}
,

1
n
∑n

i=1 1ni ≥q is bounded,

mini{ρ1/2
min(Z⊤

i Zi) : ni ≥ q} ≳ 1, i.e. Zi is a full rank,

maxi{ρ1/2
max(Z⊤

i Zi)} ≲ 1.
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Support size theorem

Theorem
Assume that the previous assumptions are satisfied. Then, there exists a constant
C1 > 0 such that:

sup
β0∈B0,Γ0∈H0

E0

[
Π
(
β : |Sβ| > C1s0

∣∣∣∣Y (n)
)]

−→
n→∞

0.
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Posterior contraction Rényi theorem

Definition
For two n-variates densities f =

∏n
i=1 fi and g =

∏n
i=1 gi of independent variables, the

average Rényi divergence (of order 1/2) is defined by:

Rn(f , g) = −1
n

n∑
i=1

log
(∫ √

figi

)

Theorem
Assume that the previous assumptions are satisfied, and log(Jn) ≲ log(p). We denote
by pβ,Γ =

∏n
i=1 pβ,Γ,i the joint density for pβ,Γ,i the density of the ith observation

vector yi , and p0 the true joint density. Then, there exists a constant C2 > 0 such that:

sup
β0∈B0,Γ0∈H0

E0

[
Π
(

(β, Γ) : Rn(pβ,Γ, p0) > C2
s0 log(p)

n

∣∣∣∣Y (n)
)]

−→
n→∞

0.
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Posterior contraction rates

Theorem
Assume that the previous assumptions are satisfied, and log(Jn) ≲ log(p). Then, there exists
constants C3,C4,C5 > 0 such that:

sup
β0∈B0,Γ0∈H0

E0

[
Π
(

Γ : ||Γ − Γ0||F > C3

√
s0 log(p)

n

∣∣∣∣Y (n)

)]
−→
n→∞

0,

sup
β0∈B0,Γ0∈H0

E0

Π

β :

√√√√1
n

n∑
i=1

||fi(Xiβ) − fi(Xiβ0)||22 > C4

√
s0 log(p)

n

∣∣∣∣Y (n)

 −→
n→∞

0,

and under an assumption of identifiability on f , with ϕ1(s) = infβ:1≤sβ≤s
||Xβ||2

√sβ

||X ||∗||β||1
:

sup
β0∈B0,Γ0∈H0

E0

[
Π
(
β : ||β − β0||1 > C5

s0
√

log(p)√
||X ||2∗ϕ2

1((C1 + 1)s0) − s2
0 log(p)

∣∣∣∣Y (n)

)]
−→
n→∞

0,
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Perspectives

✤ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:
Distributional approximation of the posterior?
Selection consistency?

under what assumptions?

Can the same results be obtained by making the model more complex?{
yi = fi(φi) + εi , εi

ind∼ Nni (0, σ2Ini ),
φi = Xiβ + ξi , ξi

i.i.d.∼ Nq(0, Γ).

where yi ∈ Rni , fi(φi) = (f (φi ; ti,1), . . . , f (φi ; ti,ni )), φi ∈ Rq, Xi ∈ Mq×p, β ∈ Rp.

✤ In linear: Can we obtain a selection consistency theorem under spike-and-slab LASSO prior
in LMEM with covariance matrix unknown?
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Et pour conclure sur les posteriEUR, en voici un sympathique...

Thank you for your attention!

Marion Naveau Posterior contraction in sparse non-linear marginal mixed model 21 / 21



References

References I

Castillo, I., Schmidt-Hieber, J., and Van der Vaart, A. (2015). Bayesian linear regression with sparse
priors. The Annals of Statistics, 43(5):1986–2018. Publisher: Institute of Mathematical Statistics.

Demidenko, E. (2013). Mixed models: theory and applications with R. John Wiley & Sons.
Jeong, S. and Ghosal, S. (2021a). Posterior contraction in sparse generalized linear models.

Biometrika, 108(2):367–379. Publisher: Oxford University Press.
Jeong, S. and Ghosal, S. (2021b). Unified Bayesian theory of sparse linear regression with nuisance

parameters. Electronic Journal of Statistics, 15(1):3040–3111. Publisher: The Institute of
Mathematical Statistics and the Bernoulli Society.

Jiang, B. and Sun, Q. (2019). Bayesian high-dimensional linear regression with generic spike-and-slab
priors. arXiv preprint arXiv:1912.08993.

Narisetty, N. N. and He, X. (2014). Bayesian variable selection with shrinking and diffusing priors. The
Annals of Statistics, 42(2):789–817. Publisher: Institute of Mathematical Statistics.

Ning, B., Jeong, S., and Ghosal, S. (2020). Bayesian linear regression for multivariate responses under
group sparsity. Bernoulli, 26(3):2353–2382. Publisher: International Statistical Institute.



References

References II

Ročková, V. and George, E. I. (2018). The spike-and-slab lasso. Journal of the American Statistical
Association, 113(521):431–444. Publisher: Taylor & Francis.

Shen, Y. and Deshpande, S. K. (2022). On the posterior contraction of the multivariate spike-and-slab
LASSO. arXiv preprint arXiv:2209.04389.



References

Model approximation

{
yi = fi(ψ,φi) + εi , εi

ind∼ Nni (0, σ2Ini ),
φi = Xiβ + ξi , ξi

i.i.d.∼ Nq(0, Γ).

where yi ∈ Rni , fi(ψ,φi) = (f (ψ,φi ; ti,1), . . . , f (ψ,φi ; ti,ni )), ψ ∈ Rr , φi ∈ Rq, Xi ∈ Mq×p, β ∈ Rp.

First order approximation of fi(ψ,Xiβ + ξi) around E[φi ] = Xiβ:

yi = fi(ψ,Xiβ) + Zi(β)ξi + εi ,

where Zi = ∂fi
∂φi

.

=⇒ Non-linear marginal mixed model with varied matrix of random effects (Demidenko, 2013).
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Identifiability/injectivity assumption

∀1 ≤ i ≤ n, ∀δ > 0, ∀t ∈ R,

|f (Xiβ, t) − f (Xiβ0, t)| ≤ δ ⇒ |f (Xiβ, t) − f (Xiβ0, t)| ≳ ||Xi(β − β0)||2
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Stages of proof

In general, the stages of proof (following Castillo et al. (2015)) are as follows:

1. Support size: sup
β0

E0

[
Π
(
β : |Sβ | > K |S0|

∣∣∣∣Y (n)
)]

−→ 0

2. Posterior contraction / Recovery: sup
θ0

E0

[
Π
(
θ : dn(θ, θ0) > Cϵn

∣∣∣∣Y (n)
)]

−→ 0, with

ϵn −→ 0
3. Distributional approximation: sup

β0

E0

[∣∣∣∣∣∣∣∣Π (β ∈ ·|Y (n))− Π∞ (β ∈ ·|Y (n)) ∣∣∣∣∣∣∣∣
TV

]
−→ 0

4. Selection, no supersets: sup
β0

E0

[
Π
(
β : Sβ ⊃ S0, Sβ ̸= S0

∣∣∣∣Y (n)
)]

−→ 0

5. Selection consistency: inf
β0

E0
[
Π(β : Sβ = S0|Y (n))

]
−→ 1.
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Idea of the proof

Set B = {(β, Γ) : |Sβ | > s̃}, with any integer s̃ ≥ s0.

Yet, by Bayes’ formula: Π(B|y) =
∫

B Λn(β, Γ)dΠ(β, Γ)∫
Λn(β, Γ)dΠ(β, Γ)

, where Λn(β, Γ) =
∏n

i=1
pβ,Γ,i
p0,i

likelihood ratio.

Thus, the following lemma shows that the denominator of the posterior distribution is bounded below
by a factor with probability tending to one:

Lemma
Let’s assume that the previous hypotheses are satisfied. Then, there exists a constant M such
that:

P0

(∫
Λn(β, Γ)dΠ(β, Γ) ≥ πp(s0)e−M(s0 log(p)+log(n))

)
−→ 1.

This event is denoted by An.
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Idea of the proof

Then, E0 [Π (B|y)] = E0 [Π (B|y)1An ] + E0
[
Π (B|y)1Ac

n

]︸ ︷︷ ︸
−→0 by lemma

.

And by the lemma and Fubini-Tonelli’s theorem the first term is bounded by a term tending towards 0
with n:

E0 [Π (B|y)1An ] = E0

[∫
B Λn(β, Γ)dΠ(β, Γ)∫
Λn(β, Γ)dΠ(β, Γ)

1An

]
≤ πp(s0)−1 exp {M(s0 log(p) + log(n))}Π(B) −→ 0.

This leads to the theorem: there exist a constant C1 such that E0 [Π (|Sβ | > C1s0|y)] −→ 0.
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