Posterior contraction in sparse non-linear marginal mixed model under spike-and-slab prior

Marion Naveau^{1,2}

Supervisors: Maud Delattre², Laure Sansonnet¹

¹Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay

²Université Paris-Saclay, INRAE, MaIAGE

Statistiques au sommet de Rochebrune

27 Mars 2024

1. [Introduction](#page-2-0)

- 2. [Non-linear marginal mixed model](#page-15-0)
- 3. [Theoretical guarantees](#page-29-0)
- 4. [Perspectives](#page-42-0)

1. [Introduction](#page-2-0)

2. [Non-linear marginal mixed model](#page-15-0)

3. [Theoretical guarantees](#page-29-0)

4. [Perspectives](#page-42-0)

$$
Y = X\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)
$$

where $Y \in \mathbb{R}^n$, $X \in \mathcal{M}_{n \times p}(\mathbb{R})$, $\beta \in \mathbb{R}^p$.

• $p = dim(\beta) \rightarrow \infty$ as the sample size $n \rightarrow \infty$.

High-dimensional linear regression

$$
Y = X\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)
$$

where $Y \in \mathbb{R}^n$, $X \in \mathcal{M}_{n \times p}(\mathbb{R})$, $\beta \in \mathbb{R}^p$.

- $p = dim(\beta) \rightarrow \infty$ as the sample size $n \rightarrow \infty$.
- **High-dimensional setting:** inference possible only if data are concentrated around some low-dimensional structure.

High-dimensional linear regression

$$
Y = X\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)
$$

where $Y \in \mathbb{R}^n$, $X \in \mathcal{M}_{n \times p}(\mathbb{R})$, $\beta \in \mathbb{R}^p$.

- $p = \dim(\beta) \to \infty$ as the sample size $n \to \infty$.
- **High-dimensional setting:** inference possible only if data are concentrated around some low-dimensional structure.
- **Sparsity:** only a few coordinates of the regression vector *β* are nonzero.

Most non-Bayesian approaches use **penalty functions** to encourage sparsity. Example: *ℓ*1-penalty

$$
\hat{\beta}_{\lambda}^{LASSO} = \underset{\beta \in \mathbb{R}^p}{\text{argmin}} \left\{ ||Y - X\beta||^2 + \lambda ||\beta||_1 \right\}
$$

Most non-Bayesian approaches use **penalty functions** to encourage sparsity. Example: *ℓ*1-penalty

$$
\hat{\beta}_{\lambda}^{LASSO} = \underset{\beta \in \mathbb{R}^p}{\text{argmin}} \left\{ ||Y - X\beta||^2 + \lambda ||\beta||_1 \right\}
$$

Bayesian framework: *ℓ*¹ and *ℓ*² regularisation methods are equivalent to assigning Laplace or Gaussian priors respectively on the regression vector.

Most non-Bayesian approaches use **penalty functions** to encourage sparsity. Example: *ℓ*1-penalty

$$
\hat{\beta}_{\lambda}^{LASSO} = \underset{\beta \in \mathbb{R}^p}{\text{argmin}} \left\{ ||Y - X\beta||^2 + \lambda ||\beta||_1 \right\}
$$

- **Bayesian framework:** *ℓ*¹ and *ℓ*² regularisation methods are equivalent to assigning Laplace or Gaussian priors respectively on the regression vector.
- The solution to the corresponding optimisation problem precisely represents the mode of the posterior distribution.

Mixture spike-and-slab priors offer a separate control over signal and noise coefficients.

- **Mixture spike-and-slab** priors offer a separate control over signal and noise coefficients.
- For each component of regression parameter:

$$
\pi(\beta_j)=(1-r)\phi_0(\beta_j)-r\phi_1(\beta_j)
$$

where ϕ_0 is a density highly concentrated at 0, ϕ_1 is a density allowing intermediate and large values of β_j , and r is a small parameter inducing sparsity in the mixture.

- **Mixture spike-and-slab** priors offer a separate control over signal and noise coefficients.
- For each component of regression parameter:

 $\pi(\beta_i) = (1 - r)\phi_0(\beta_i) - r\phi_1(\beta_i)$

where ϕ_0 is a density highly concentrated at 0, ϕ_1 is a density allowing intermediate and large values of β_j , and r is a small parameter inducing sparsity in the mixture.

Examples of mixture spike-and-slab priors: Dirac-Laplace, Laplace-Laplace, Gaussian-Gaussian, etc...

Selection consistency and Posterior contraction

Selection property

Estimation property

Selection consistency: the posterior probability of the true model converges to 1

$$
\inf_{\beta_0}\, \mathbb{E}_{0}\left[\Pi(\beta: S_{\beta} = S_{0}|\, Y^{(n)})\right]\underset{n\rightarrow\infty}{\longrightarrow} 1
$$

Posterior contraction: ability of the posterior distribution to recover the true model from the data

$$
\sup_{\theta_0} \mathbb{E}_0 \left[\Pi \left(\theta : d_n(\theta, \theta_0) > C \epsilon_n \middle| Y^{(n)} \right) \right] \underset{n \to \infty}{\longrightarrow} 0
$$

with $\epsilon_n \underset{n \to \infty}{\longrightarrow} 0$.

✤ **With known variance:**

✤ **With known variance:**

✤ **With unknown variance:**

where $LR =$ Linear Regression.

1. [Introduction](#page-2-0)

2. [Non-linear marginal mixed model](#page-15-0)

3. [Theoretical guarantees](#page-29-0)

4. [Perspectives](#page-42-0)

✤ **Mixed-effects models:** analyse observations collected repeatedly on several individuals.

Circumference of five orange trees

- ✤ Same overall behaviour but with individual variations.
- ✤ Non-linear growth.
- **[◆]** Are these variations due to known characteristics?
	- ▶ E.g.: growing conditions, genetic markers, ...

$$
Y_i = f_i(X_i\beta) + Z_i\xi_i + \varepsilon_i^*, \varepsilon_i^* \sim \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \xi_i \sim \mathcal{N}_q(0, \Gamma),
$$

 $Y_i \in \mathbb{R}^{n_i}$, $n_i \in \{1, \ldots, J_n\}$, where n_i and J_n can grow with n.

$$
Y_i = f_i(X_i\beta) + Z_i\xi_i + \varepsilon_i^*, \varepsilon_i^* \sim \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \xi_i \sim \mathcal{N}_q(0, \Gamma),
$$

- $Y_i \in \mathbb{R}^{n_i}$, $n_i \in \{1, \ldots, J_n\}$, where n_i and J_n can grow with n.
- $f_i(x) = (f(x; t_{i,1}), \ldots, f(x; t_{i,n_i}))^{\top}$, for f non-linear regression function.

$$
Y_i = f_i(X_i\beta) + Z_i\xi_i + \varepsilon_i^*, \varepsilon_i^* \sim \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \xi_i \sim \mathcal{N}_q(0, \Gamma),
$$

- $Y_i \in \mathbb{R}^{n_i}$, $n_i \in \{1, \ldots, J_n\}$, where n_i and J_n can grow with n.
- $f_i(x) = (f(x; t_{i,1}), \ldots, f(x; t_{i,n_i}))^{\top}$, for f non-linear regression function.
- $X_i \in \mathcal{M}_{\alpha \times \beta}$, $Z_i \in \mathcal{M}_{n \times \alpha}$, q fixed small and $p >> n$.

$$
Y_i = f_i(X_i\beta) + Z_i\xi_i + \varepsilon_i^*, \varepsilon_i^* \sim \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \xi_i \sim \mathcal{N}_q(0, \Gamma),
$$

- $Y_i \in \mathbb{R}^{n_i}$, $n_i \in \{1, \ldots, J_n\}$, where n_i and J_n can grow with n.
- $f_i(x) = (f(x; t_{i,1}), \ldots, f(x; t_{i,n_i}))^{\top}$, for f non-linear regression function.
- $X_i \in \mathcal{M}_{\alpha \times \alpha}$, $Z_i \in \mathcal{M}_{n \times \alpha}$, q fixed small and $p >> n$.
- We assumed that σ^2 is known.

$$
Y_i = f_i(X_i\beta) + Z_i\xi_i + \varepsilon_i^*, \varepsilon_i^* \sim \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \xi_i \sim \mathcal{N}_q(0, \Gamma),
$$

- $Y_i \in \mathbb{R}^{n_i}$, $n_i \in \{1, ..., J_n\}$, where n_i and J_n can grow with n.
- $f_i(x) = (f(x; t_{i,1}), \ldots, f(x; t_{i,n_i}))^{\top}$, for f non-linear regression function.
- $X_i \in \mathcal{M}_{\alpha \times \beta}$, $Z_i \in \mathcal{M}_{n \times \alpha}$, q fixed small and $p >> n$.
- We assumed that σ^2 is known.
- **Population parameter:** $\theta = (\beta, \Gamma)$, $\beta \in \mathbb{R}^p$, $\Gamma \in \mathcal{M}_{q \times q}$.

For $1 < i < n$

$$
Y_i = f_i(X_i\beta) + Z_i\xi_i + \varepsilon_i^*, \varepsilon_i^* \sim \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \xi_i \sim \mathcal{N}_q(0, \Gamma),
$$

- $Y_i \in \mathbb{R}^{n_i}$, $n_i \in \{1, ..., J_n\}$, where n_i and J_n can grow with n.
- $f_i(x) = (f(x; t_{i,1}), \ldots, f(x; t_{i,n_i}))^{\top}$, for f non-linear regression function.
- $X_i \in \mathcal{M}_{\alpha \times \alpha}$, $Z_i \in \mathcal{M}_{n \times \alpha}$, q fixed small and $p >> n$.
- We assumed that σ^2 is known.
- **Population parameter:** $\theta = (\beta, \Gamma)$, $\beta \in \mathbb{R}^p$, $\Gamma \in \mathcal{M}_{q \times q}$.

We assume that \emph{n} independent observations $\emph{Y}^{(\emph{n})}=(\emph{Y}_{i})_{1\leq i\leq n}\in\mathbb{R}^{N},$ where $N = \sum_{i=1}^{n} n_i$, has been generated from this model for a given sparse β_0 and a given Γ_0 . The expectation under these true parameters is denoted \mathbb{E}_0 .

• This model is called "marginal" because the marginal expected value and the covariance matrix of the response variable Y_i are given explicitly through the population parameter vector: $\mathbb{E}[Y_i] = f_i(X_i\beta)$, $Cov(Y_i) = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}$.

- This model is called "marginal" because the marginal expected value and the covariance matrix of the response variable Y_i are given explicitly through the population parameter vector: $\mathbb{E}[Y_i] = f_i(X_i\beta)$, $Cov(Y_i) = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}$.
- The model can be written compactly as:

$$
Y_i \sim \mathcal{N}(f_i(X_i \beta), \Delta_{\Gamma,i}), \text{ where } \Delta_{\Gamma,i} = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}.
$$

- This model is called "marginal" because the marginal expected value and the covariance matrix of the response variable Y_i are given explicitly through the population parameter vector: $\mathbb{E}[Y_i] = f_i(X_i\beta)$, $Cov(Y_i) = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}$.
- The model can be written compactly as:

$$
Y_i \sim \mathcal{N}(f_i(X_i \beta), \Delta_{\Gamma,i}), \text{ where } \Delta_{\Gamma,i} = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}.
$$

Priors:

- This model is called "marginal" because the marginal expected value and the covariance matrix of the response variable Y_i are given explicitly through the population parameter vector: $\mathbb{E}[Y_i] = f_i(X_i\beta)$, $Cov(Y_i) = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}$.
- The model can be written compactly as:

$$
Y_i \sim \mathcal{N}(f_i(X_i \beta), \Delta_{\Gamma,i}), \text{ where } \Delta_{\Gamma,i} = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}.
$$

Priors:

• Spike-and-slab Dirac-Laplace on
$$
(S, \beta)
$$
: $(S, \beta) \mapsto \frac{\pi_p(s)}{\binom{p}{s}} g_S(\beta_S) \delta_0(\beta_{S^c})$,

- This model is called "marginal" because the marginal expected value and the covariance matrix of the response variable Y_i are given explicitly through the population parameter vector: $\mathbb{E}[Y_i] = f_i(X_i\beta)$, $Cov(Y_i) = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}$.
- The model can be written compactly as:

$$
Y_i \sim \mathcal{N}(f_i(X_i \beta), \Delta_{\Gamma,i}), \text{ where } \Delta_{\Gamma,i} = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}.
$$

Priors:

- Spike-and-slab Dirac-Laplace on (S, β) : $(S, \beta) \mapsto \frac{\pi_p(s)}{\beta_p}$ $\frac{\rho(s)}{\binom{\rho}{s}} g_S(\beta_S) \delta_0(\beta_{S^c}),$
- Inverse-Wishart(Σ, *d*) prior on Γ: $\pi(\Gamma) \propto |\Gamma|^{-(d+q+1)/2} \exp\left(-\frac{1}{2}\text{Tr}(\Sigma\Gamma^{-1})\right)$.

- This model is called "marginal" because the marginal expected value and the covariance matrix of the response variable Y_i are given explicitly through the population parameter vector: $\mathbb{E}[Y_i] = f_i(X_i\beta)$, $Cov(Y_i) = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}$.
- The model can be written compactly as:

$$
Y_i \sim \mathcal{N}(f_i(X_i \beta), \Delta_{\Gamma,i}), \text{ where } \Delta_{\Gamma,i} = Z_i \Gamma Z_i^{\top} + \sigma^2 Id_{n_i}.
$$

Priors:

- Spike-and-slab Dirac-Laplace on (S, β) : $(S, \beta) \mapsto \frac{\pi_p(s)}{\beta_p}$ $\frac{\rho(s)}{\binom{\rho}{s}} g_S(\beta_S) \delta_0(\beta_{S^c}),$
- Inverse-Wishart(Σ, *d*) prior on Γ: $\pi(\Gamma) \propto |\Gamma|^{-(d+q+1)/2} \exp\left(-\frac{1}{2}\text{Tr}(\Sigma\Gamma^{-1})\right)$.

Goal

Obtain posterior contraction result in such model for the parameters *β* and Γ under spike-and-slab Dirac-Laplace prior.

1. [Introduction](#page-2-0)

2. [Non-linear marginal mixed model](#page-15-0)

3. [Theoretical guarantees](#page-29-0)

4. [Perspectives](#page-42-0)

• For some constants A_1 , A_2 , A_3 , $A_4 > 0$,

$$
A_1p^{-A_3}\pi_p(s-1)\leq \pi_p(s)\leq A_2p^{-A_4}\pi_p(s-1),\,s=1,\ldots p.
$$

 \blacktriangleright **Example:** $\beta_1, \ldots \beta_p \sim (1 - r)\delta_0 + r\mathcal{L}$, $\pi_p = Bin(p, r)$ where $r \sim Beta(1, p^u)$, $u > 1$.

• For some constants A_1 , A_2 , A_3 , $A_4 > 0$.

$$
A_1p^{-A_3}\pi_p(s-1)\leq \pi_p(s)\leq A_2p^{-A_4}\pi_p(s-1), s=1,\ldots p.
$$

 \blacktriangleright **Example:** $\beta_1, \ldots \beta_p \sim (1 - r)\delta_0 + r\mathcal{L}$, $\pi_p = Bin(p, r)$ where $r \sim Beta(1, p^u)$, $u > 1$.

 \bullet f is assumed to be Lipschitzienne:

$$
\forall x, y \in \mathbb{R}^q, \forall t \in \mathbb{R}, \, ||f(x, t) - f(y, t)||_2 \leq K||x - y||_2.
$$

We denote by $K_n =$ $\sqrt{K^2 J_n}$. **► Example:** Log-Gompertz model $y_{ii} = \beta_1 + b_i - Ce^{-\beta_2 t_{ij}} + \varepsilon_{ii}$

 \bullet For some constants A_1 , A_2 , A_3 , $A_4 > 0$.

$$
A_1p^{-A_3}\pi_p(s-1)\leq \pi_p(s)\leq A_2p^{-A_4}\pi_p(s-1), s=1,\ldots p.
$$

 \blacktriangleright **Example:** $\beta_1, \ldots \beta_p \sim (1 - r)\delta_0 + r\mathcal{L}$, $\pi_p = Bin(p, r)$ where $r \sim Beta(1, p^u)$, $u > 1$.

 \bullet f is assumed to be Lipschitzienne:

$$
\forall x, y \in \mathbb{R}^q, \forall t \in \mathbb{R}, ||f(x, t) - f(y, t)||_2 \leq K||x - y||_2.
$$

We denote by $K_n =$ $\sqrt{K^2 J_n}$. **► Example:** Log-Gompertz model $y_{ii} = \beta_1 + b_i - Ce^{-\beta_2 t_{ij}} + \varepsilon_{ii}$ $\mathsf{g}_{\mathsf{S}}(\beta_{\mathsf{S}}) = \prod_{j \in \mathsf{S}}$ *λ* $\frac{\lambda}{2}\exp(-\lambda|\beta_j|)$, with $\frac{||X||_*K_n}{L_1\rho^{L_2}}\leq\lambda\leq\frac{L_3||X||_*K_n}{\sqrt{n}}$, for some constants L_1 , L_2 , $L_3 > 0$, where $||X||_* = \max_j ||X_{.j}||_2$.

•
$$
s_0 > 0
$$
, $s_0 \log(p) = o(n)$,

- $s_0 > 0$, $s_0 \log(p) = o(n)$,
- **•** $\Gamma_0 \in \mathcal{H}_0$, with $\mathcal{H}_0 = \{\Gamma : 1 \leq \rho_{min}(\Gamma) \leq \rho_{max}(\Gamma) \leq 1\}$

- $s_0 > 0$, $s_0 \log(p) = o(n)$,
- **•** $\Gamma_0 \in \mathcal{H}_0$, with $\mathcal{H}_0 = \{\Gamma : 1 \leq \rho_{\text{min}}(\Gamma) \leq \rho_{\text{max}}(\Gamma) \leq 1\}$
- $\beta_0 \in \mathcal{B}_0$, with $\mathcal{B}_0 = \big\{\beta : ||\beta||_\infty \lesssim \lambda^{-1} \log(p) \big\},$

- $s_0 > 0$, $s_0 \log(p) = o(n)$,
- **•** $\Gamma_0 \in \mathcal{H}_0$, with $\mathcal{H}_0 = \{\Gamma : 1 \leq \rho_{min}(\Gamma) \leq \rho_{max}(\Gamma) \leq 1\}$
- $\beta_0 \in \mathcal{B}_0$, with $\mathcal{B}_0 = \big\{\beta : ||\beta||_\infty \lesssim \lambda^{-1} \log(p) \big\},$
- 1 $\frac{1}{n}\sum_{i=1}^n \mathbb{1}_{n_i \geq q}$ is bounded,

- \bullet *s*₀ > 0, *s*₀ log(*p*) = *o*(*n*),
- **0** $\Gamma_0 \in \mathcal{H}_0$, with $\mathcal{H}_0 = \{\Gamma : 1 \leq \rho_{min}(\Gamma) \leq \rho_{max}(\Gamma) \leq 1\}$
- $\beta_0 \in \mathcal{B}_0$, with $\mathcal{B}_0 = \big\{\beta : ||\beta||_\infty \lesssim \lambda^{-1} \log(p) \big\},$

•
$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{n_i \geq q}
$$
 is bounded,

 $\min_i \{ \rho_{\sf min}^{1/2} (Z_i^\top Z_i) : n_i \geq q \} \gtrsim 1$, *i.e.* Z_i is a full rank,

- $\bullet s_0 > 0$, $s_0 \log(p) = o(n)$,
- **•** $\Gamma_0 \in \mathcal{H}_0$, with $\mathcal{H}_0 = \{\Gamma : 1 \leq \rho_{min}(\Gamma) \leq \rho_{max}(\Gamma) \leq 1\}$
- $\beta_0 \in \mathcal{B}_0$, with $\mathcal{B}_0 = \left\{\beta : ||\beta||_\infty \lesssim \lambda^{-1} \log(p) \right\},$

•
$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{n_i \geq q}
$$
 is bounded,

- $\min_i \{ \rho_{\sf min}^{1/2} (Z_i^\top Z_i) : n_i \geq q \} \gtrsim 1$, *i.e.* Z_i is a full rank,
- $\max_i \{ \rho_{\sf max}^{1/2} (Z_i^{\top} Z_i) \} \lesssim 1.$

Theorem

Assume that the previous assumptions are satisfied. Then, there exists a constant $C_1 > 0$ such that:

$$
\sup_{\beta_0\in\mathcal{B}_0,\Gamma_0\in\mathcal{H}_0}\mathbb{E}_0\left[\Pi\left(\beta:|S_{\beta}|>C_1s_0\bigg|\gamma^{(n)}\right)\right]\underset{n\to\infty}{\longrightarrow}0.
$$

Posterior contraction Rényi theorem

Definition

For two n-variates densities $f = \prod_{i=1}^n f_i$ and $g = \prod_{i=1}^n g_i$ of independent variables, the average Rényi divergence (of order 1/2) is defined by:

$$
R_n(f,g)=-\frac{1}{n}\sum_{i=1}^n\log\left(\int\sqrt{f_ig_i}\right)
$$

Theorem

Assume that the previous assumptions are satisfied, and $log(J_n) \le log(p)$. We denote by $p_{\beta,\Gamma} = \prod_{i=1}^n p_{\beta,\Gamma,i}$ the joint density for $p_{\beta,\Gamma,i}$ the density of the ith observation vector y_i , and p_0 the true joint density. Then, there exists a constant $C_2 > 0$ such that:

$$
\sup_{\beta_0\in\mathcal{B}_0,\Gamma_0\in\mathcal{H}_0}\mathbb{E}_0\left[\Pi\left((\beta,\Gamma):R_n(p_{\beta,\Gamma},p_0)>C_2\frac{s_0\log(p)}{n}\middle|Y^{(n)}\right)\right]\underset{n\to\infty}{\longrightarrow}0.
$$

Posterior contraction rates

Theorem

Assume that the previous assumptions are satisfied, and $log(J_n) \lesssim log(p)$. Then, there exists constants C_3 , C_4 , $C_5 > 0$ such that:

$$
\sup_{\beta_0 \in \mathcal{B}_0, \Gamma_0 \in \mathcal{H}_0} \mathbb{E}_0 \left[\Pi \left(\Gamma : ||\Gamma - \Gamma_0||_F > C_3 \sqrt{\frac{s_0 \log(p)}{n}} \middle| Y^{(n)} \right) \right] \underset{n \to \infty}{\longrightarrow} 0,
$$
\n
$$
\sup_{\beta_0 \in \mathcal{B}_0, \Gamma_0 \in \mathcal{H}_0} \mathbb{E}_0 \left[\Pi \left(\beta : \sqrt{\frac{1}{n} \sum_{i=1}^n ||f_i(X_i \beta) - f_i(X_i \beta_0)||_2^2} > C_4 \sqrt{\frac{s_0 \log(p)}{n}} \middle| Y^{(n)} \right) \right] \underset{n \to \infty}{\longrightarrow} 0,
$$
\n
$$
\text{d under an assumption of identity } \text{in } \mathbb{E}_0 \left[\prod_{i=1}^n \left| \frac{\log p_i(x_i, \beta_i)}{\log p_i(x_i, \beta_0)} \middle| Y^{(n)} \right| \right] \underset{n \to \infty}{\longrightarrow} 0,
$$

and under an assumption of identifiability on f, with $\phi_1(s) = \inf_{\beta: 1 \le s_\beta \le s} \frac{||X\beta||_2 \sqrt{s_\beta}}{||X||_*||\beta||_1}$ $\frac{||\mathcal{X}|\cdot||^2 \sqrt{8\beta}}{||X||_*||\beta||_1}$

$$
\sup_{\beta_0\in\mathcal{B}_0,\Gamma_0\in\mathcal{H}_0}\mathbb{E}_0\left[\Pi\left(\beta:||\beta-\beta_0||_1>C_5\frac{s_0\sqrt{\log(\rho)}}{\sqrt{||X||_*^2\phi_1^2((C_1+1)s_0)-s_0^2\log(\rho)}}\bigg|\,Y^{(n)}\right)\right]\underset{n\rightarrow\infty}{\longrightarrow}0,
$$

1. [Introduction](#page-2-0)

2. [Non-linear marginal mixed model](#page-15-0)

3. [Theoretical guarantees](#page-29-0)

4. [Perspectives](#page-42-0)

✤ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:

- Distributional approximation of the posterior?
- **o** Selection consistency?

under what assumptions?

✤ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:

- Distributional approximation of the posterior?
- Selection consistency?

under what assumptions?

Can the same results be obtained by making the model more complex?

$$
\begin{cases}\n y_i = f_i(\varphi_i) + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{ind}}{\sim} \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \\
\varphi_i = X_i \beta + \xi_i, \quad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_q(0, \Gamma).\n\end{cases}
$$

 $\mathsf{where}\; y_i \in \mathbb{R}^{n_i},\; f_i(\varphi_i) = (f(\varphi_i; t_{i,1}), \ldots, f(\varphi_i; t_{i,n_i})),\; \varphi_i \in \mathbb{R}^q,\; X_i \in \mathcal{M}_{\boldsymbol{q} \times \boldsymbol{p}},\; \beta \in \mathbb{R}^p.$

✤ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:

- Distributional approximation of the posterior?
- Selection consistency?

under what assumptions?

Can the same results be obtained by making the model more complex?

$$
\begin{cases}\n y_i = f_i(\varphi_i) + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{ind}}{\sim} \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \\
\varphi_i = X_i \beta + \xi_i, \quad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_q(0, \Gamma).\n\end{cases}
$$

 $\mathsf{where}\; y_i \in \mathbb{R}^{n_i},\; f_i(\varphi_i) = (f(\varphi_i; t_{i,1}), \ldots, f(\varphi_i; t_{i,n_i})),\; \varphi_i \in \mathbb{R}^q,\; X_i \in \mathcal{M}_{\boldsymbol{q} \times \boldsymbol{p}},\; \beta \in \mathbb{R}^p.$

✤ In linear: **Can we obtain a selection consistency theorem under spike-and-slab LASSO prior in LMEM with covariance matrix unknown?**

Et pour conclure sur les posteriEUR, en voici un sympathique...

Thank you for your attention!

References I

- Castillo, I., Schmidt-Hieber, J., and Van der Vaart, A. (2015). Bayesian linear regression with sparse priors. The Annals of Statistics, 43(5):1986-2018. Publisher: Institute of Mathematical Statistics.
- Demidenko, E. (2013). Mixed models: theory and applications with R. John Wiley & Sons.
- Jeong, S. and Ghosal, S. (2021a). Posterior contraction in sparse generalized linear models. Biometrika, 108(2):367–379. Publisher: Oxford University Press.
- Jeong, S. and Ghosal, S. (2021b). Unified Bayesian theory of sparse linear regression with nuisance parameters. Electronic Journal of Statistics, 15(1):3040–3111. Publisher: The Institute of Mathematical Statistics and the Bernoulli Society.
- Jiang, B. and Sun, Q. (2019). Bayesian high-dimensional linear regression with generic spike-and-slab priors. arXiv preprint arXiv:1912.08993.
- Narisetty, N. N. and He, X. (2014). Bayesian variable selection with shrinking and diffusing priors. The Annals of Statistics, 42(2):789–817. Publisher: Institute of Mathematical Statistics.
- Ning, B., Jeong, S., and Ghosal, S. (2020). Bayesian linear regression for multivariate responses under group sparsity. Bernoulli, 26(3):2353–2382. Publisher: International Statistical Institute.

References II

- Ročková, V. and George, E. I. (2018). The spike-and-slab lasso. Journal of the American Statistical Association, 113(521):431–444. Publisher: Taylor & Francis.
- Shen, Y. and Deshpande, S. K. (2022). On the posterior contraction of the multivariate spike-and-slab LASSO. arXiv preprint arXiv:2209.04389.

Model approximation

$$
\begin{cases}\n y_i = f_i(\psi, \varphi_i) + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{ind}}{\sim} \mathcal{N}_{n_i}(0, \sigma^2 I_{n_i}), \\
\varphi_i = X_i \beta + \xi_i, \quad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}_q(0, \Gamma).\n\end{cases}
$$
\nwhere $y_i \in \mathbb{R}^{n_i}$, $f_i(\psi, \varphi_i) = (f(\psi, \varphi_i; t_{i,1}), \ldots, f(\psi, \varphi_i; t_{i,n_i})), \psi \in \mathbb{R}^r$, $\varphi_i \in \mathbb{R}^q$, $X_i \in \mathcal{M}_{q \times p}$, $\beta \in \mathbb{R}^p$.

First order approximation of $f_i(\psi, X_i \beta + \xi_i)$ around $\mathbb{E}[\varphi_i] = X_i \beta$:

$$
y_i = f_i(\psi, X_i \beta) + Z_i(\beta) \xi_i + \varepsilon_i,
$$

where $Z_i = \frac{\partial f_i}{\partial x_i}$ $\frac{\partial H}{\partial \varphi_i}$.

 \Rightarrow Non-linear marginal mixed model with varied matrix of random effects [\(Demidenko, 2013\)](#page-47-7).

Identifiability/injectivity assumption

$\forall 1 \leq i \leq n, \forall \delta > 0, \forall t \in \mathbb{R}$,

 $|f(X_i\beta, t) - f(X_i\beta_0, t)| \leq \delta \Rightarrow |f(X_i\beta, t) - f(X_i\beta_0, t)| \geq ||X_i(\beta - \beta_0)||_2$

Stages of proof

In general, the stages of proof (following [Castillo et al. \(2015\)](#page-47-0)) are as follows:

- 1. **Support size:** sup $\sup_{\beta_0} \mathbb{E}_0 \left[\Pi \left(\beta: |S_\beta| > K |S_0| \bigg| Y^{(n)} \right) \right] \longrightarrow 0$ \mid
- 2. **Posterior contraction / Recovery:** sup \mathbb{E}_{θ} $\left[\Pi\left(\theta:d_{n}(\theta, \theta_{0})>\mathcal{C}_{\epsilon_{n}}\right)\right]$ $Y^{(n)}$ $\Big] \longrightarrow 0$, with $\epsilon_n \longrightarrow 0$
- 3. **Distributional approximation:** sup *kup* \mathbb{E}_{0} $\left[\left\|\right\|$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left. \begin{array}{c} \Pi \left(\beta \in \cdot | Y^{(n)} \right) - \Pi^{\infty} \left(\beta \in \cdot | Y^{(n)} \right) \end{array} \right|$ $\Big|_{\tau \rm v}$ $\Big] \rightarrow 0$
- 4. **Selection, no supersets:** sup \sup_{β_0} $\mathbb{E}_0 \left[\Pi \left(\beta : S_\beta \supset S_0, S_\beta \neq S_0 \right) \right]$ $\left[\gamma^{(n)}\right] \longrightarrow 0$
- **5. Selection consistency:** inf $\mathbb{E}_0 \left[\Pi(\beta : S_\beta = S_0 | Y^{(n)}) \right] \longrightarrow 1$.

Idea of the proof

Set $B = \{(\beta, \Gamma) : |S_{\beta}| > \tilde{s}\}$, with any integer $\tilde{s} \geq s_0$. Yet, by Bayes' formula: $\Pi(B|{\mathsf y})=$ $\int_B \Lambda_n(\beta,\Gamma)d\Pi(\beta,\Gamma)$ $\int \frac{R}{\ln(\beta,\Gamma)} \frac{N_n(\beta,\Gamma)}{N_n(\beta,\Gamma)} d\Pi(\beta,\Gamma)$, where $\Lambda_n(\beta,\Gamma) = \prod_{i=1}^n$ p*β,*Γ*,*ⁱ $\frac{p_{0,i},l}{p_{0,i}}$ likelihood ratio. Thus, the following lemma shows that the denominator of the posterior distribution is bounded below by a factor with probability tending to one:

Lemma

Let's assume that the previous hypotheses are satisfied. Then, there exists a constant M such that:

$$
\mathbb{P}_0\left(\int \Lambda_n(\beta, \Gamma) d\Pi(\beta, \Gamma) \geq \pi_p(s_0) e^{-M(s_0\log(p) + \log(n))} \right) \longrightarrow 1.
$$

This event is denoted by A_n .

Idea of the proof

Then,
$$
\mathbb{E}_0 [\Pi (B|y)] = \mathbb{E}_0 [\Pi (B|y) 1\!\!1_{\mathcal{A}_n}] + \underbrace{\mathbb{E}_0 [\Pi (B|y) 1\!\!1_{\mathcal{A}_n^c}]}_{\longrightarrow 0 \text{ by lemma}}.
$$

And by the lemma and Fubini-Tonelli's theorem the first term is bounded by a term tending towards 0 with *n*:

$$
\mathbb{E}_0 \left[\Pi \left(B | y \right) \mathbb{1}_{\mathcal{A}_n} \right] = \mathbb{E}_0 \left[\frac{\int_{\mathcal{B}} \Lambda_n(\beta, \Gamma) d \Pi(\beta, \Gamma)}{\int \Lambda_n(\beta, \Gamma) d \Pi(\beta, \Gamma)} \mathbb{1}_{\mathcal{A}_n} \right] \newline \leq \pi_p(s_0)^{-1} \exp \left\{ M(s_0 \log(p) + \log(n)) \right\} \Pi(B) \longrightarrow 0.
$$

This leads to the theorem: there exist a constant C_1 such that $\mathbb{E}_0 [\Pi (|S_\beta| > C_1 s_0 | y)] \longrightarrow 0$.