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High-dimensional linear regression

Y =XB+¢e, e~Ny(0,5°l,)
where Y € R", X € Mp«p(R), f € RP.

e p = dim(f) — oo as the sample size n — .
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High-dimensional linear regression

Y =XB+¢e, e~Ny(0,5°l,)
where Y € R", X € Mp«p(R), f € RP.
e p=dim(f) — oo as the sample size n — oc.

o High-dimensional setting: inference possible only if data are concentrated
around some low-dimensional structure.

@ Sparsity: only a few coordinates of the regression vector 8 are nonzero.
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Penalised approach

@ Most non-Bayesian approaches use penalty functions to encourage sparsity.
Example: {1-penalty

BLASSO _ aremin {||Y ~XB|2+ A||ﬁ||1}
BERP
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@ Most non-Bayesian approaches use penalty functions to encourage sparsity.
Example: {1-penalty

BLASSO _ aremin {||Y ~XB|2+ A||ﬁ||1}
BERP

o Bayesian framework: /; and /> regularisation methods are equivalent to
assigning Laplace or Gaussian priors respectively on the regression vector.

@ The solution to the corresponding optimisation problem precisely represents the
mode of the posterior distribution.
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Spike-and-slab priors

e Mixture spike-and-slab priors offer a separate control over signal and noise
coefficients.
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Spike-and-slab priors

e Mixture spike-and-slab priors offer a separate control over signal and noise
coefficients.
@ For each component of regression parameter:

m(8;) = (1 — r)¢o(B;) — ré1(B))

where ¢q is a density highly concentrated at 0, ¢; is a density allowing
intermediate and large values of 3;, and r is a small parameter inducing sparsity in
the mixture.
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Spike-and-slab priors

e Mixture spike-and-slab priors offer a separate control over signal and noise
coefficients.

@ For each component of regression parameter:

m(8;) = (1 — r)¢o(B;) — ré1(B))

where ¢q is a density highly concentrated at 0, ¢; is a density allowing
intermediate and large values of 3;, and r is a small parameter inducing sparsity in
the mixture.

o Examples of mixture spike-and-slab priors: Dirac-Laplace, Laplace-Laplace,
Gaussian-Gaussian, etc...
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Selection consistency and Posterior contraction

Selection property
|
Selection consistency: the posterior
probability of the true model converges to 1

inf Bo [N1(8: S5 = Sol Y)| — 1
Bo

n— o0

Estimation property
]
Posterior contraction: ability of the posterior
distribution to recover the true model from the
data

sup Eq [I’I (9 2 dy(0.00) > Cep
o

Y(")>] — 0
n—o0

with ¢, — 0.
n—o0
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State of the art

< With known variance:

Castillo et al. (2015) LR Dirac  Laplace Consistency
Rockova and George (2018) LR Laplace Laplace Contraction
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State of the art

% With known variance:

Castillo et al. (2015) LR Dirac  Laplace Consistency
Rockova and George (2018) LR Laplace Laplace Contraction

% With unknown variance:

Narisetty and He (2014) LR Gaussian  Gaussian  Consistency
Jiang and Sun (2019) LR Generic  Generic  Consistency
Ning et al. (2020) Multivariate LR Dirac Laplace  Consistency
Jeong and Ghosal (2021a) GLMs Dirac Laplace  Contraction

Jeong and Ghosal (2021b) LR with nuisance Dirac Laplace  Consistency
Shen and Deshpande (2022) Multivariate LR Laplace Laplace  Contraction

where LR = Linear Regression.
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2. Non-linear marginal mixed model
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Framework: repeated measurement data

¢ Mixed-effects models: analyse observations collected repeatedly on several individuals.

Circumference of five orange trees
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>
o
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Age (days)
% Same overall behaviour but with individual variations.
¢ Non-linear growth.
¢ Are these variations due to known characteristics?
» E.g.: growing conditions, genetic markers, ...
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Non-linear marginal mixed model

For1 <i<n,
Y = fi(Xi0) + Zi&i + €F, €f ~ Nu (0,67 1,), & ~ Ng(0,T),

o Y;eR", n;e{l,...,Jn}, where n; and J, can grow with n.
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For1 <i<n,
Y = fi(Xi0) + Zi&i + €F, €f ~ Nu (0,67 1,), & ~ Ng(0,T),

o Y;eR", n;e{l,...,Jn}, where n; and J, can grow with n.

o fi(x) = (f(x;ti1),...,f(x;tin)) ", for f non-linear regression function.
o Xi € Myxp, Zi € Mp,xq. q fixed small and p >> n.

o We assumed that o is known.
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Non-linear marginal mixed model

For1 <i<n,

Y = fi(Xi0) + Zi&i + €F, €f ~ Nu (0,67 1,), & ~ Ng(0,T),

Y; € R", n; € {1,...,Jn}, where n; and J, can grow with n.

fi(x) = (f(x; ti1),..., f(x; tin)) ", for f non-linear regression function.
Xi € Mgxp, Zi € Mp;xq. q fixed small and p >> n.

We assumed that ¢ is known.

Population parameter: ¢ — (7. 1), 7 < RP [« M, .
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Non-linear marginal mixed model

AC)

For1 <i<n,

Y = fi(Xi0) + Zi&i + €F, €f ~ Nu (0,67 1,), & ~ Ng(0,T),

Y; € R", n; € {1,...,Jn}, where n; and J, can grow with n.

fi(x) = (f(x; ti1),..., f(x; tin)) ", for f non-linear regression function.
Xi € Mgxp, Zi € Mp;xq. q fixed small and p >> n.

We assumed that ¢ is known.

Population parameter: ¢ — (7. 1), 7 < RP [« M, .

We assume that n independent observations y(n) = (Yi)i<i<n € RN, where
N = Y71 n;, has been generated from this model for a given sparse /3y and a given
[g. The expectation under these true parameters is denoted Eg.
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Sparse non-linear marginal mixed model

@ This model is called "marginal” because the marginal expected value and the
covariance matrix of the response variable Y; are given explicitly through the
population parameter vector: E[Y;] = f:(X;3), Cov(Y;) = ZTZ" + o?Id,,..
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Sparse non-linear marginal mixed model

@ This model is called "marginal” because the marginal expected value and the
covariance matrix of the response variable Y; are given explicitly through the
population parameter vector: E[Y;] = f:(X;3), Cov(Y;) = ZTZ" + o?Id,,..

@ The model can be written compactly as:

Y ~ N(f:(XiB), Ar ;), where Ar; = ZiTZ" + o?1d,,.

@ Priors:
o Spike-and-slab Dirac-Laplace on (S, 3): (S, ) — W’(’T()S)gs(ﬁs)éo(ﬁsc),

s
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Sparse non-linear marginal mixed model

@ This model is called "marginal” because the marginal expected value and the
covariance matrix of the response variable Y; are given explicitly through the
population parameter vector: E[Y;] = f:(X;3), Cov(Y;) = ZTZ" + o?Id,,..

@ The model can be written compactly as:

Y ~ N(f:(XiB), Ar ;), where Ar; = ZiTZ" + o?1d,,.

@ Priors:
o Spike-and-slab Dirac-Laplace on (S, 8): (S,8) — (()) 5(B8s)do(Bse),

o Inverse-Wishart(X, d) prior on I': m(I") oc |[|~(@+a+D)/2 exp (-1 Tr(Zr—1)).
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Sparse non-linear marginal mixed model

@ This model is called "marginal” because the marginal expected value and the
covariance matrix of the response variable Y; are given explicitly through the
population parameter vector: E[Y;] = f:(X;3), Cov(Y;) = ZTZ" + o?Id,,..

@ The model can be written compactly as:

Y ~ N(f:(XiB), Ar ;), where Ar; = ZiTZ" + o?1d,,.

@ Priors:
o Spike-and-slab Dirac-Laplace on (S, 3): (S, ) — (()) 5(B8s)do(Bse),

o Inverse-Wishart(X, d) prior on I': m(I") oc |[|~(@+a+D)/2 exp (-1 Tr(Zr—1)).

Obtain posterior contraction result in such model for the parameters 8 and I under
spike-and-slab Dirac-Laplace prior.
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Assumptions

@ For some constants A;, Ay, Az, Ay >0,
A1P_A37Tp(5 —1) <mp(s) < A2P_A47TP(5 —1),s=1...p.

» Example: 51,...5, ~ (1 —r)éo + rL, mp = Bin(p, r) where r ~ Beta(1, p*), u > 1.
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@ f is assumed to be Lipschitzienne:
Vx,y €RIVE €R, [[f(x,1) = f(y, t)l|l2 < Kl[x = y|l2.

We denote by K, = v/K2J,.
» Example: Log-Gompertz model y; = 51 + bi — Ce P2ty Ejj
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Assumptions

AC)

@ For some constants A;, Ay, Az, Ay >0,
A1P_A37Tp(5 —1) <mp(s) < A2P_A47TP(5 —1),s=1...p.

» Example: 51,...5, ~ (1 —r)éo + rL, mp = Bin(p, r) where r ~ Beta(1, p*), u > 1.

@ f is assumed to be Lipschitzienne:
Vx,y €RIVE €R, [[f(x,1) = f(y, t)l|l2 < Kl[x = y|l2.

We denote by K, = v/K2J,.
» Example: Log-Gompertz model y; = 51 + bi — Ce P2ty Ejj

A X« K L3|| X« K
° gs(Bs) = ITjes Eexp(—)\|ﬂj|), with % <A< L,L*" for some constants Ly, Lo,
L3 > 0, where ||)<||>,< = max; ||XJ||2
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Assumptions on true parameters

@ sp >0, solog(p) = o(n),
o [y € Hop, with Hg = {r 15 pmin(r) < pmax(r) S 1}

® Bo € Bo, with By = {3 : [|B]|oc S A tlog(p)},

1., )
° > > im1 1,54 is bounded,
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Assumptions on true parameters

@ sp >0, solog(p) = o(n),
@ g € Ho, with Ho ={T : 1 < pmin(l) < pmax(F) S 1}
® By € Bo, with Bo = {8 : ||B||oc S A7 log(p)},

1., )
° > > im1 1,54 is bounded,

° min,-{pi]/iﬁ(Z,-TZ,-) :nj>q} 21, ie Zis a full rank,
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@ g € Ho, with Ho ={T : 1 < pmin(l) < pmax(F) S 1}
® By € Bo, with Bo = {8 : ||B||oc S A7 log(p)},

1., )
° > > im1 1,54 is bounded,

° min,-{pi]/iﬁ(Z,-TZ,-) :nj>q} 21, ie Zis a full rank,

o max;{pna(Z7Z)} S 1.
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Support size theorem

Assume that the previous assumptions are satisfied. Then, there exists a constant
C1 > 0 such that:

sup Ko [n (,@: |Ss| > Clso‘w")ﬂ — 0.

Bo€Bo,MoEHo n—oco
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Posterior contraction Rényi theorem

Definition

For two n-variates densities f = [[_; f; and g = []}_; gi of independent variables, the
average Rényi divergence (of order 1/2) is defined by:

Ri(f,g) = —%glog </ ﬁ)

Assume that the previous assumptions are satisfied, and log(J,) < log(p). We denote
by pa,r = I1i=1 pa,r,i the joint density for pgr ; the density of the ith observation
vector y;, and po the true joint density. Then, there exists a constant C, > 0 such that:

lo
sup o [I‘I ((5, ) : Ra(ps,rspo) > N 8P) g(p)‘y(n)ﬂ — 0.
BoE€By,MoEHo n n— o0

4
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Postenor contraction rates

Assume that the previous assumptions are satisfied, and log(J,) < log(p). Then, there exists
constants C3, C4, G5 > 0 such that:

— 0,

n—o0

[ |
sup  Eo |M r:||r—r0||p>cgg/&g(p)'y<")
Bo€Bo,MoEHo i n

Ly S0 |0g(P)’
sup Eo [TH{ 32|~ D [[fi(XiB)—fi(Xi 2>C\/7Y(") — 0,
el o B0 [T 734 5 2 NX8) = fXif)lE > Coyf == ,

and under an assumption of identifiability on f, with ¢1(s) = infg.1<s,<s %ﬁ?:

s0+/log(p) ‘ (n)
Eo | : — Y
ot oo °l (ﬁ W=l > & G + Do)~ 2 ioa(e)

4
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Perspectives

¢ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:

@ Distributional approximation of the posterior?
@ Selection consistency?

under what assumptions?
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Perspectives

¢ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:
@ Distributional approximation of the posterior?
@ Selection consistency?
under what assumptions?
Can the same results be obtained by making the model more complex?

{ yi = filpi) +ei e s ,,I_(O,ozl,,,.),
ii.d.
;= X,,B + Ei 751' ~ Nq(o’ r)

where y; € R™, fi(@i) = (f(piiti1), ... (@i tin)), i € RI, Xi € Mgxp, 5 €RP.
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Perspectives

¢ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:

@ Distributional approximation of the posterior?
@ Selection consistency?

under what assumptions?
Can the same results be obtained by making the model more complex?

{ yi = filpi) +ei e s ,,I_(O,ozl,,,),
ei=XiB+& L& e Ng(0, ).
where y; € R, fi(pi) = (f(@ii tin)s -, F(@ii tim)), i € R, Xi € Mgyp, € RP.

% In linear: Can we obtain a selection consistency theorem under spike-and-slab LASSQO prior
in LMEM with covariance matrix unknown?
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Thank you for your attention!
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Model approximation

{ yi=fi(Y, o))+ e S 0 (0,0%1,),
©Yi = X,ﬁ + gi agi I'I\(’j Nq(07 r)

where yi € R™, f;(w, (p,') = (f(’tb, ©i; t,',l), RN f(’gb, ©is t,"n/.)), ’(/) c R, Qi € RY9, X; € qup, ﬁ c RP.
First order approximation of fi(1, Xi3 + &;) around E[p;] = X;0:

yi = (¢, XiB) + Zi(B)&; + ¢i,

f;
where Z; = %

= Non-linear marginal mixed model with varied matrix of random effects (Demidenko, 2013).
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|dentifiability /injectivity assumption

Vi<i<n, Vé>0VteR,

[F(XiB, 1) — £(Xifo, t)| <& = [F(XiB,t) — F(XiBo, t)| Z ||Xi(B — Bo)ll2
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Stages of proof

In general, the stages of proof (following Castillo et al. (2015)) are as follows:

Y("))] —0

2. Posterior contraction / Recovery: sup Eq [I’I (9 1 dn(6,00) > Ce,

0o

1. Support size: sup Eq [I‘I (ﬁ 1158 > K|So|

Bo

Y(")>] — 0, with
€, — 0
3. Distributional approximation: sup Eq [H (Be |y ) ne (g e ~|Y("))

Y(”))] —0

]—)0
TV

4. Selection, no supersets: sup Eq [I‘I (,8 258 D 50,58 # So

Bo

5. Selection consistency: iEf Eq [I'I(B 1S5 = 50|y(n))] 31,
0
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|dea of the proof

Set B={(8,T) :|Ss| > 5}, with any integer 5 > s.

Yet, by Bayes' formula: MN(B|y) = ffB//\\ ((BB’ :I'T((Bﬁ’rr))

Thus, the following lemma shows that the denominator of the posterior distribution is bounded below
by a factor with probability tending to one:

where A,(8,T) =11, Pg L7 Jikelihood ratio.
0,i

Let’s assume that the previous hypotheses are satisfied. Then, there exists a constant M such
that:

Py (/ An(B,1)dN(5,T) > ﬂp(so)e_M(SU |°g(p)+log("))) 1.

This event is denoted by A,.
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|dea of the proof

Then, Eo [M1(Bly)] = Eo [M1(Bly) 1.4,] + Eo [ (Bly) Lag)
|

—0 by lemma

And by the lemma and Fubini-Tonelli's theorem the first term is bounded by a term tending towards 0
with n:

Eo [M(Bly)14,] = Eo %/\ (3,1 :I'T((Bﬂ: ))

< 7p(s0) " exp {M(s log(p) + log(n))}1(B) — 0.

This leads to the theorem: there exist a constant C; such that Eq [[1(]Sg| > Cisoly)] — 0.
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