
GWAS multi-traits à partir de données groupées

Christophe Ambroise, Amin Madoui, Bargob Kakothy

Université d’Evry/CNRS/INRAe

1



Motivations



Tenebrio Molitor

The yellow mealworm (Tenebrio molitor) is a
beetle that is particularly fond of cereal flours.

• It is found all over the world.
• It is capable of living in very dry stored foods.
• It is capable of eating certain forms of

expanded polystyrene.
• It can live for up to 6 months.
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Food

Mealworms are used
• In animal feed, especially to feed various

insectivorous species such as birds, reptiles,
and fish.

• In human food: they have a sweet, nutty
flavor and can be used as substitutes in
various dishes, including pastries and savory
pies, or eaten fried.
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Project YNFABRE i

• YNSECT Launches YNFABRE, the
World’s First Industrial Program
Dedicated to Beetle Genetics

• Ynsect has identified a strain of
mealworms through selection that
allows for 25% faster growth than the
original strain

• 30,000 tons of Molitor larva flour,
rich in proteins,

• 60,000 tons of fertilizer, derived from
the excretions of all these small
animals

• Improvement of the yield of insect
farms 5



Project YNFABRE ii

Politicians during the
inauguration of the
construction site for
the vertical farm of
Ÿnsect near Amiens
(Libérarion 2021)
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Project YNFABRE iii

Sequencing of 4,000 genotypes and haplotyping of Tenebrio molitor by
high-throughput sequencing and Axiom biochips

• GWAS: Identification of phenotype-predictive loci by Genome
Wide Association Studies

• Genomic Estimation Breeding Value: Construction and
evaluation of a model based on pool-seq data and phenotypic data
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Pool Data in Genomics
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pool Data in Genomics
Classical data

SNP 1 SNP 2 … SNP 𝑔
0 0 … 1
2 0 … 1
1 1 … 0
2 2 … 0
… … … …
2 0 … 2

Table 1: Genotype

Phenotype 1 Phenotype 2 … Phenotype 𝑑
100 5 … 10
20 10 … 10
10 10 … 50
200 5 … 40
… … … …

200 2 … 60

Table 2: Phenotype

Pool data
Group Freq. 1 Freq. 2 … Freq. 𝑔

1 0.2 0.1 … 0.95
1 0.2 0.1 … 0.95
2 0.8 0.76 … 0.07
2 0.8 0.76 … 0.07
… … … …
K 0.3 0.1 … 0.21

Table 3: Group allele frequencies

Phenotype 1 Phenotype 2 … Phenotype 𝑑
100 5 … 10
20 10 … 10
10 10 … 50
200 5 … 40
… … … …

200 2 … 60

Table 4: Phenotype
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Pool GWAS / pool Breeding value

Principle
• each individual phenotype (size, number of eggs…) is measured
• the genetic is processed by pool: only allele frequencies are

available for each marker
• Goal: Adapt Classical analysis for pools of individuals:

• GWAS
• breeding value

Characteristics
• Cost effective
• Existing methodologies for pool-GWAS are limited and can only

handle single phenotypes (to my knowledge)
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Model



Missing Data

In contrast to classical GWAS approaches, pool-GWAS can be seen as
a missing data challenge where

• Observed data: average genotypes of the pool of the individual,
• Missing data: complete individual genotypes.

K-Pools
Consider 𝐾 pools constructed according to the procedure described
above:

• 𝑝𝑘,𝑗 is the minor allele frequency (MAF) of SNP 𝑗 in pool 𝑘.
• it estimates of the true proportion of minor alleles in pool 𝑘.
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Notations
Matrix of the 𝑝 MAFs in the 𝐾 pools
𝐹 = {𝑝𝑘,𝑗}𝑘,𝑗 ∈ [0, 1]𝐾×𝑝

Cluster matrix
𝐶 = {𝐶𝑖𝑘}𝑖𝑘 ∈ {0, 1}𝑛×𝐾 the pool membership binary matrix where
𝐶𝑖𝑘 = 𝕀(ind. i comes from pool k). We will also denote by 𝑐(𝑖) the
pool of individual 𝑖.
Design matrix

𝑋 = 𝐶𝐹

Matrix of phenotypes

𝑌 ∈ ℝ𝑛×𝑑
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Unobserved genotype of individual 𝑖 at locus 𝑗

𝐺𝑖𝑗 ∼ 𝐵𝑖𝑛(2, 𝑝𝑐(𝑖),𝑗)
which we approximate by a Gaussian distribution !

𝐺𝑖𝑗 ≈ 𝑋𝑖𝑗 + √2𝑝𝑐(𝑖),𝑗(1 − 𝑝𝑐(𝑖),𝑗)𝜖𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑍𝑖𝑗

where

𝜖𝑖𝑗 ∼ 𝒩(0, 1)
and 𝑋𝑖𝑗 is the average allele frequency of the pool 𝑐(𝑖).
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A mixed linear model with missing data

𝑦𝑖 = 𝜇 + 𝐵𝑔𝑖 + 𝑒𝑖,
where

• 𝜇 is a fixed part,
• 𝐵 is a 𝑑 by 𝑝 matrix of weight parameters
• the genetic contribution 𝑔𝑖 = (𝐺𝑖𝑗)𝑇

𝑗=1⋯𝑝,
• 𝑒𝑖 is random vector modeling the environmental contribution to

the phenotype.
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A mixed linear model with missing data

𝑦𝑖 = 𝜇 + 𝐵 (𝑥𝑖 + 𝑧𝑖)⏟
𝑔𝑖

+𝑒𝑖.

where

• 𝑥𝑖 is fixed (minor allele frequencies)
• 𝑧𝑖 ∼ 𝒩𝑝(0, 𝑉𝑔)
• 𝑒𝑖 ∼ 𝒩𝑑(0, 𝑉𝑒)
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Relation to Factor analysis

If we disregard the average frequency, the model mentioned above
closely resembles classical factor analysis (Murphy 2012):

𝑦𝑖 = 𝜇 + 𝐵𝑧𝑖 + 𝑒𝑖

For 𝑦 = 𝜇 + 𝐵 (𝑥 + 𝑧)⏟
𝑔

+𝑒

• Marginal distribution : 𝑦 ∼ 𝒩𝑑(𝜇 + 𝐵𝑥, Σ𝑦𝑦 = 𝐵𝑉𝑔𝐵𝑇 + 𝑉𝑒)
• Posterior distribution: 𝑧|𝑦 ∼ 𝒩𝑝(𝜇𝑧|𝑦, Σ𝑧|𝑦)

where

• Σ𝑧|𝑦 = Σ𝑧𝑧 − Σ𝑧𝑦Σ−1
𝑦𝑦 Σ𝑦𝑧 = 𝑉𝑔 − 𝐵𝑇 (𝐵𝑉𝑔𝐵𝑇 + 𝑉𝑒)−1𝐵 = 𝑆

• 𝜇𝑧|𝑦 = Σ𝑧|𝑦Σ−1
𝑦𝑦 (𝑦 − 𝜇 − 𝐵𝑥)
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EM algorithm for pool GWAS

• 𝜇, 𝐵 and 𝑉 𝑒 are estimated using a simple Expectation
Maximisation algorithm (Dempster, Laird, and Rubin 1977)

• EM algorithm slow to converge in such a high dimensional problem
• Tackling the problem from a machine learning perspective using

asymptotic arguments

17



A faster alternative approach: Noise injection

The expression of genotypes as the sum of observed frequencies and a
missing part can also be related to noise injection (Grandvalet, Canu,
and Boucheron 1997), (Grandvalet 2000):

• acts as a form of regularization,
• prevents overfitting
• improves generalization and robustness

Noise injection can be seen as a kind of data aumentation where the
individual genotypes from their MAF are regenerated.

18



Theoritical risk

We consider the classical risk assuming 𝑒𝑖 ⟂⟂ 𝑧𝑖

𝐽 = −𝔼𝑒𝑖,𝑧𝑖
[log 𝑓(𝑒𝑖, 𝑧𝑖)]

= −𝔼𝑒𝑖,𝑧𝑖
[log 𝑓(𝑒𝑖|𝑧𝑖)] − 𝔼𝑒𝑖,𝑧𝑖

[log 𝑓(𝑧𝑖)]⏟⏟⏟⏟⏟⏟⏟
− 1

2 (log det(𝑉 𝑔)+log 2𝜋)

= −𝐸𝑒𝑖,𝑧𝑖
[−

‖𝑦𝑖 − 𝐵𝑥𝑖 + 𝐵𝑧𝑖‖2
𝑉 −1

𝑒

2 ] + 𝑐𝑠𝑡,

= 𝐸𝑒𝑖,𝑧𝑖
[−

‖𝑦𝑖 − 𝐵𝑥𝑖‖2
𝑉 −1

𝑒

2 ] + 𝔼 [𝑧𝑇
𝑖 𝐵𝑇 𝑉 −1

𝑒 𝐵𝑧𝑖]
2 + 𝑐𝑠𝑡,

= 𝐸𝑒𝑖,𝑧𝑖
[−

‖𝑦𝑖 − 𝐵𝑥𝑖‖2
𝑉 −1

𝑒

2 ] + 𝑡𝑟𝑎𝑐𝑒 [𝑉𝑔𝐵𝑇 𝑉 −1
𝑒 𝐵]

2 + 𝑐𝑠𝑡,
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Empirical risk

̂𝐽 (𝐵) = 1
𝑛 ∑

𝑖
‖𝑦𝑖 − 𝐵𝑥𝑖‖2

𝑉 −1
𝑒

+ 𝑡𝑟𝑎𝑐𝑒(𝑉 −1
𝑒 𝐵𝑉𝑔𝐵𝑇 ),

= 1
𝑛𝑡𝑟𝑎𝑐𝑒(∑

𝑖
(𝑦𝑖 − 𝐵𝑥𝑖)𝑇 𝑉 −1

𝑒 (𝑦𝑖 − 𝐵𝑥𝑖)) + 𝑡𝑟𝑎𝑐𝑒(𝑉 −1
𝑒 𝐵𝑉𝑔𝐵𝑇 ),

= 1
𝑛𝑡𝑟𝑎𝑐𝑒(𝑉 −1

𝑒 (𝑌 𝑇 𝑌 + 𝐵𝑋𝑇 𝑋𝐵𝑇 − 2𝑌 𝑇 𝑋𝐵𝑇 ) + 𝑡𝑟𝑎𝑐𝑒(𝑉 −1
𝑒 𝐵𝑉𝑔𝐵𝑇 ),

where 𝑌 is 𝑛 by 𝑑 matrix of phenotype such that 𝑌 = (𝑦𝑖𝑗)𝑖𝑗.
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Minimization

The gradient writes

∇𝐵 ̂𝐽 (𝐵) = 2
𝑛𝑉 −1

𝑒 𝐵𝑋𝑇 𝑋 − 2
𝑛𝑉 −1

𝑒 𝑌 𝑇 𝑋 + 2𝑉 −1
𝑒 𝐵𝑉 𝑔 = 0,

By canceling the gradient we get:

𝑉 −1
𝑒 𝐵 (𝑋𝑇 𝑋 + 𝑛𝑉 𝑔) = 𝑉 −1

𝑒 𝑌 𝑇 𝑋,
𝐵 = 𝑌 𝑇 𝑋 (𝑋𝑇 𝑋 + 𝑛𝑉 𝑔)−1 .

▶ 𝑑 parallele adaptive ridge regressions with known penalties

▶ 𝑑 BLUPs 21



Algorithm



Practical consideration

Estimation of 𝐵
Tested implementations

1. Gradient descent for Adaptive Ridge
2. Singular Value Decomposition of 𝑋

• X of rank 𝐾 (of the order of 10 to 30)
• Faster than brute force Gradient descent

p-values computation and correction
1. Simple (dirty) normal assumption of test stat (from GWALPHA)
2. Knockoff (very slow)
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Application



Simulation

PhenotypeSimulator (Meyer and Birney 2018) was used to simulate
multivariate complex phenotypes with multiple loci involved, other
genetic and non-genetic factors, and observational noise structure.
Parameters
• ℎ2: Heritability
• 𝐾: Pool size
• 𝑛: Population size
• 𝑝: Number of Markers

Compared methods
• EMMA (StatGenGWAS)
• PooGawM
• Chi square
• GWalpha (Fournier-Level, Robin, and Balding 2017) 23



Baseline method using classical GWAS (without pool)

Single trait GWAS in the statgenGWAS package follows the approach
of (Kang et al. 2010):

1. population structure and kinship (relatedness) among individuals
estimated using linear mixed model.

2. using an F-test, for each SNP in turn using previous step to
estimate the covariance structure among individuals
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GWalpha (Fournier-Level, Robin, and Balding 2017)

1. ranked 𝑌 binned into K pools based on their trait values.
2. Inverse-quantile transformed into [0, 1]
3. For each pool 1 ⋯ 𝐾, 𝑞1, ⋯ , 𝑞𝐾 dist. of a specific allele accross

the pools
4. GWAlpha estimates the parameters of the beta distribution of the

𝑞𝑘, both for a specified allele and for all alternative
5. Test stat: ̂𝛼 = 𝑊( 𝜇̂𝐴𝑙𝑙𝑒𝑙𝑒−𝜇̂𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒

𝜎𝑦
)
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Scores

• Precision: ratio of true positive predictions to the total positive
predictions

• Recall : ratio of true positive predictions to all positive
• F1 score : harmonic mean of precision and recall

𝐹1.𝑠𝑐𝑜𝑟𝑒 = 2𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
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Heritability: ℎ2

• Recall comparable to EMMA and GWalpha
• Precision slightly better than GWalpha
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Comparison with EMMA on real INRAe Maize data
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Worm Weight at 56 days
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Summary and perspectives

In summary
Simple model for

• considering multi-traits
• computation of pseudo breeding value computation

Perspectives
• Take into account dependence structure among phenotypes
• Improve the multiple testing strategy
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