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Polemonium (Teo et al., 2023)

Trait evolution on a network with within-species variation
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Figure 1: Calibrated 17-taxon SNaQ network. Edge lengths
are normalized so that the network height is 1. The dotted
vertical components of minor edges indicate the destination
of gene flow and do not contribute to length. Hybrid edges
are labelled with their inheritance weights. The major tree of
the network is obtained by deleting the minor (red) edges and
setting the weights for the major (purple) edges to 1. The
minor tree is obtained by deleting the major edges and setting
the weights of the minor edges to 1 (e.g., P. elusum is sister
to P. carneum, not P. “viscosum” n.sp., in the minor tree).

these tests are only approximate because the variance483

ratio ⌘ is estimated. Tools for mixed linear models,484

such as Satterthwaite’s or Kenward-Roger’s approx-485

imation (see e.g., R package lmerTest, Kuznetsova486

et al. 2017), or bootstrap approaches could provide487

more accurate confidence intervals for fixed e↵ects488

and variance parameters.489

2.5 Simulations490

To quantify the performance of our method and its491

robustness to assumptions, we used PhyloNetworks492

to simulate trait data on a network with 3 reticula-493

tions. We used the 17-taxon network on the flow-494

ering plant genus Polemonium estimated by Rose495

et al. (2021). We calibrated it following the approach496

described in Bastide et al. (2018) to obtain branch497

lengths proportional to time instead of branch lengths498

in coalescent units. The resultant network is shown499

in Figure 1.500

We describe here the most general form of our501

simulation model, which allows for model violation502

via within-species variation in the predictor and pos-503

sible phenotypic correlation. Since the simulated phe-504

notypic and evolutionary correlations may di↵er, our505

simulation model is similar to the PMM (Lynch 1991),506

which has separate trait covariances for the herita-507

ble and non-heritable components (but uses a single508

value per species).509

We simulated one predictor X with a BM with510

variance rate �2
b,x and within-species variance �2

w,x:511

X = Zx + �x with x ⇠ N (0,�2
b,xV ) (12)

and with �x ⇠ N (0,�2
w,xIN ). We then simulated512

the response Y as a linear function of the true species 513

mean of X, an additional phylogenetic component be- 514

tween species, and within-species variation possibly 515

correlated with the within-species variation in X: 516

Y = Z(�1x + ✏y) + �2�x + �y (13)

with ✏y ⇠ N (0,�2
b,yV ) from a BM with rate �2

b,y 517

and �y ⇠ N (0, R) is within-species variation in- 518

dependent of the predictor, using R = �2
w,yIN as 519

in our estimation model, unless otherwise noted. In 520

some simulations, we set R to be diagonal with dif- 521

ferent entries for di↵erent species, that is, unequal 522

within-species variances. With these notations, the 523

true species means for the response are y = �1x+✏y. 524

Our model (3) allows for an intercept, which we 525

fixed to �0 = 0 in our simulations. Our model does 526

not make any assumption on X but assumes that 527

the species means x are observed. This is the case if 528

�2
w,x = 0, which implies that �x = 0 and �2 becomes 529

irrelevant. If �2
w,x > 0, then x is unobserved, and 530

the sample species means for X need to be used for 531

estimation instead. In that case, our simulations vio- 532

late the assumptions of our model. The phylogenetic 533

and phenotypic relationships are equal if �1 = �2, 534

as assumed in (10) by our �-model on the expanded 535

network. 536

In all of our simulations, we set �2
b,x = 2, �2

b,y = 1, 537

and �1 = 1. We set the sample sizes mi and other pa- 538

rameters according to various settings, as described 539

below, and simulated 500 data sets for each combi- 540

nation of parameters. 541

We then estimated the model parameters using 542

various methods and ML or REML. Namely, we used 543

the BM or Pagel’s � model that use species means, 544

which we abbreviate as BMn and P�n (where “n” 545

stands for “no” within-species variation). We also 546

used model (3) under a BM, which we abbreviate as 547

BMy as it accounts for within-species variation in Y 548

but not in predictors. Finally, we used the BMpheno 549

model (10), which accounts for within-species vari- 550

ation in both the response and predictors but con- 551

strains the phenotypic relationship. 552

2.5.1 Impact of ignoring within-species variation 553

To assess the impact of accounting for within-species 554

variation, we used equal sample sizes mi = m with 555

m = 3 or 8, �2
w,y in {0.4, 0.6, 0.8} and no model vi- 556

olation: �2
w,x = 0. We then compared the estimates 557

obtained with ML versus REML and the methods 558

that ignore or account for within-species variation. 559
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Figure: Teo et al. (2023)
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West Nile Virus (WNV) (Pybus et al., 2012)

the epidemic’s spatial dynamics have been explored only theo-
retically (22) or at very local scales (23, 24), and values reported
for the basic reproductive number, R0, of the epidemic vary
widely (14, 21, 25). Most phylogenetic studies have revealed little
about the epidemic’s spatial structure due to the limited diversity
of the subgenomic sequences typically used (26).

Linking Phylogeography and Spatial Ecology
This section explains how evolutionary analyses of viral spread
can be formally linked with spatial ecology, enabling the esti-
mation of spatial epidemiological variables from genomic data.
The approach is based on the application of a simple yet pow-
erful idea: phylogenies reconstructed from spatial epidemics
are branching structures that record the correlated histories of
transmission among sampled infections (Fig. 1 A and B), hence
the phylogeny of an epidemic can be used to correct for spatial
autocorrelation. More specifically, if the dates and locations of
all phylogenetic nodes are known or posited, then each phylog-
eny branch represents a conditionally independent trajectory
of viral movement, defined by a start location, end location, and
duration (27) (Fig. 1 A and B). Independence is conditional on
the date and location values proposed for each node; any esti-
mation or measurement uncertainty in these can be readily in-
corporated bymarginalization. Consequently, the spatial dynamics
of an epidemic can be quantified using simple, nonparametric
statistics of these displacements. This approach is analogous to that
used by phylogenetic comparative methods, which convert corre-
lated species trait values into independent observations amenable
to statistical tests (28).
Although many statistics of spatial dynamics could be calcu-

lated using this framework, we introduce the approach by esti-
mating the diffusion coefficient, D, without an explicit model of
spatial autocorrelation. Given a set of n movement observations
(phylogeny branches) whose durations and start and end loca-
tions are specified, D can be estimated using

D≈
1
n

Xn

i=1

d2i
4ti

; [1]

where ti denotes the duration in years of branch i, during which
the lineage has moved di km away from its start position in two
dimensions (5, 12) (Fig. 1 A and B). This estimator follows the
classical relationship between D and mean square displacement
(29) and has been previously used to estimate the diffusivity of
intentionally released rabid foxes that were subsequently tracked
via telemetry (5).
Estimates of the dates and locations of internal phylogenetic

nodes (ancestral infections; Fig. 1) can be readily obtained using
current phylogeographic and molecular clock techniques (10).
In our WNV analysis we infer the longitude and latitude of in-
ternal nodes using a 2D anisotropic random walk (Materials and
Methods). The marginal posterior probability densities of these
locations (and of D) can be estimated using standard Bayesian
Markov chain Monte Carlo (MCMC) techniques; hence our pro-
cedure fully incorporates statistical uncertainty (10). Sequences
sampled from the epidemic are assumed to have a single com-
mon ancestor (no recombination or introgression). Although
there must be sufficient temporal information to reliably esti-
mate the timescale of the phylogeny, the approach does not
necessitate the assumption of neutral sequence evolution.
We note two key benefits of this approach: first, it will be

applicable to a broad range of situations because the inference of
ancestral locations is separated from the estimation of D (or
other spatial variable); for each application, the most statistically
appropriate model for inferring the former can be chosen. Second,
the approach extends readily to more realistic, heterogeneous dis-
persal processes. Specifically, in this study, we use a flexible relaxed

random walk that allows the rate of dispersal to vary among phy-
logeny branches according to some probability distribution, while
constraining it to be constant along each branch (Materials and
Methods). As a result, we can directly measure heterogeneity in
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Fig. 1. (A and B) The link between spatial ecology and phylogenetics. Filled
circles represent viral sequences whose locations and dates of sampling are
known. Squares represent unsampled ancestral infections whose locations
and dates are estimated. The black squares in A and B denote the epidemic’s
origin in space and time, respectively. (A) Colored arrows indicate the di-
rection and distance di of the movement trajectory defined by each lineage.
Thin colored lines show the random walk undertaken by each lineage. (B)
The phylogeny resulting from the spatial infection process in A. Colored lines
in B show the duration ti of each lineage. Diffusivity can be inferred by
combining the information in A and B. Diffusivity is low for lineages with
long and winding paths that do not lead far (e.g., green), and is high for
lineages that quickly move large distances (e.g., purple). (C) Maximum clade
credibility phylogeny of the North American WNV epidemic, estimated from
whole genomes under the best-fitting dispersal model (Table 1). Posterior
probabilities of branching events are indicated by red (P > 0.95) and yellow
(P > 0.85) circles. Blue bars show the 95% HPD credible intervals of the es-
timated dates of well-supported nodes. See Fig. S1 for full annotation.

Pybus et al. PNAS | September 11, 2012 | vol. 109 | no. 37 | 15067
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Coronaviruses (Müller et al., 2022)

Figure: Müller et al. (2022)
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Native American and Arctic populations (Nielsen et al., 2023)

information about the number of and timing of admixture events (see S9 Fig). From such a
topology set, we can create the minimal topology, which is the ‘simplest’ directed graph yielding
the same topology set (see S10 Fig). The two minimal topologies with the highest posterior
probabilities are shown in Fig 3. We also considered the frequency of each internal node across
posterior samples. In Fig 3 these frequencies are denoted as percentages in parentheses in each
node. The second summary of the admixture graph sample is the set of nodes with a frequency
higher than α in the topology sets, which we denote as the consensus graph at threshold α. S6
Fig shows this summary for α = 0.75.

While no single graph received high support when including all data, we can extract sub-
graphs that are informative about the relationships between specific subsets of populations.
With AdmixtureBayes, it is possible to consider the relative support, in terms of posterior
probability, of individual subgraphs. Analyzing the support for subgraphs within the context
of a larger admixture graph has an advantage over analyses limited to the focal populations
represented in the subgraph, that information from other populations can be directly taken
into account.

There has been considerable debate about the relationships between populations repre-
sented by the Koryak, Saqqaq, Greenlanders, and the Athabascans. Archaeological evidence
suggests that the Inuit people from Greenland and people from the now extinct Saqqaq culture
represent independent migrations into the Americas from Eastern Siberia and the area around
the Bering strait [20] [21] [22]. However, there is some debate about the origin of the Athabas-
cans [21] [23] [24] [25]. Most molecular evidence of Athabascan ancestry is thought to have
originated from the first migration of people into the Americas that also gave rise to most

Fig 3. The two minimal topologies with the highest posterior probabilities in our real dataset. Leaf nodes that are the product of an admixture event
are shown in purple. Leaf nodes that are not the product of an admixture event are shown in light blue. The root is shown in black. Each inner node is
colored according to the posterior probability that the true graph has a node with the same descendants. Higher probabilities have a darker shade of
green. The posterior probability is written as a percentage in parentheses inside each node, next to the node name, which is arbitrary. The left graph has
a posterior probability of 32%. The right graph has a posterior probability of 19%.

https://doi.org/10.1371/journal.pgen.1010410.g003

PLOS GENETICS Bayesian inference of admixture graphs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010410 February 13, 2023 9 / 22

Figure: Nielsen et al. (2023)
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Brownian Motion on a Tree (Felsenstein, 1985)
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Brownian Motion on a Tree (Felsenstein, 1985)
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Brownian Motion on a Tree
Brownian Motion on a Network
Naive Variance Computation

Brownian Motion on a Tree (Felsenstein, 1985)
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Brownian Motion on a Tree (Felsenstein, 1985)
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pi : path from root to tip i :

p4 = {e8, e9, e4}
p5 = {e8, e9, e5}
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Brownian Motion on a Network
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}
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C16 = ℓe11 × γ
+ 0 × (1− γ)

Cnet
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Pre-Order
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BM on a Network

Y = µ1+ σE E ∼ N (0,CY ,Y )

Inference: µ̂, σ̂
Ancestral State Reconstruction: p(Z |Y )

Formulas: need to invert (non sparse) matrix CY ,Y
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σ2
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Loopy Belief Propagation

Heredity rules
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

General Model on a Tree

X5

X4

X3

X2

X1

X6

X7

X8

X9 Xr ∼ N (µ,Γ) root

Xj

∣∣ Xpa(j) ∼ N
(
qjXpa(j) + rj , Σj

)
nodes

BM: qj = Ip, rj = 0p, Σj = ℓjR.

OU: qj = e−Aℓj , rj = (Ip − e−Aℓj )βj , Σj = S− e−AℓjSe−AT ℓj .

Measurement errors, drift, shifts, Integrated OU... +

Question: what happens at hybrids ?
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Hybridizations

a

b
i

Xi = γa(qaXa + ra + ϵa) ϵa ∼ N (0,Σa)

+ γb(qbXb + rb + ϵb) ϵb ∼ N (0,Σb)

Xi =

(
γaqa 0
0 γbqb

)(
Xa

Xb

)
+ γara + γbrb + γaϵa + γbϵb

Xj

∣∣ Xpa(j) ∼ N
(
qjXpa(j) + rj , Σj

)
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Graphical Model

DAG: Trait evolution → linear Gaussian distribution

Factors: node v givent its parents u

ϕv (Xv |Xu, θ; u ∈ pa(v)) ∼ N
(
qjXpa(j) + rj , Σj

)
Joint Distribution:

pθ(Xv ; v ∈ V ) =
∏
v∈V

ϕv (Xv |Xu, θ; u ∈ pa(v))

Goal: compute

• likelihood pθ(Xo ; o ∈ Vobs)

• ancestral reconstruction pθ(Xv |Xo ; o ∈ Vobs)

Tool: Belief Propagation
Benjamin Teo, Paul Bastide, Cécile Ané Phylogenetic Networks 13/21



Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Clique Tree

X5

X4

X3

X2

X1

X6

X7

X8

X9

Phylogenetic Tree

X8 X5

X8 X4

X7 X3

X9 X2

X9 X1

X6

X6 X7

X7 X8

X6 X9

X6

X7

X8
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X7

X6

X9

X9

Clique Tree

Cluster graph:

• Nodes: clusters Ci (family preserving)

• Edges: Sepsets Sij ⊆ Ci ∩ Cj

• Running intersection: each variable defines a tree
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Belief Propagation (Koller and Friedman, 2009)

Initialization:

• βi =
∏

v :scope(v)∈Ci
ϕv cluster beliefs

• µi ,j = 1 sepset beliefs

Message passing: from Ci to Cj

• µ̃i ,j =
∫
Ci\Si,j βid(Ci \ Si ,j)

• βj ← βj
µ̃i,j

µi,j

• µi ,j ← µ̃i ,j

At calibration:

• βi = p(Xv , v ∈ Ci |Xo , o ∈ Vobs)

• µi ,j = p(Xv , v ∈ Si ,j |Xo , o ∈ Vobs)

Clique tree: only two traversals are needed.
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Clique Tree
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Phylogenetic Network

5 1

6 2

7 3

5 4 7 5 6 75 7

5

6

7

Clique Tree

Clique tree construction:

• Moralization, triangulation, maximum spanning tree

BP:

• Complexity depends on max clique size
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Implementation

Linear Gaussian

• Canonical form: C(x;K,h, g) = exp
(
−1

2x
TKx+ hTx+ g

)
• Message passing: simple matrix operations

package PhyloGaussianBeliefProp.jl

• Interface for phylogenetic neworks

• Clique tree construction

• Likelihood and Ancestral state computation with BP

• Optimization using ForwardDiff.jl
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Gradient Computation

Fisher’s Identity Cappé et al. (2005)

∇θ′ [log pθ′(Y)]|θ′=θ = Eθ [∇θ′ [log pθ′(Xv ; v ∈ V )]|θ′=θ | Y ]

Linear Gaussian

• Only depends on E [Xv | Y ] and Var [Xv | Y ]

• sub-product of BP

• links with autodiff ?

Simple Brownian Motion: analytical estimator formulas

• for the multivariate BM and phylogenetic regression

• network equivalent to Ho and Ané (2014)

Benjamin Teo, Paul Bastide, Cécile Ané Phylogenetic Networks 18/21



Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

When is BP efficient ?
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Cluster Graph
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Cluster Graph
Cluster graph:

• Nodes: clusters Ci (family preserving)

• Edges: Sepsets Sij ⊆ Ci ∩ Cj

• Running intersection: each variable defines a tree

Construction:

• Bethe cluster graph, join graph, ...

• Trade-off complexity / accuracy

Loopy BP +
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Conclusion

General framework for trait evolution on networks

• Ecology: continuous traits

• Virology: phylogeography

• Admixture graph inference

Implementation

• package

• linear time estimators for the BM

• work on API and integration within julia

Perspectives

• loopy BP vs BP: network structures ?

• Deal with degeneracy: traits at tips

• Beyond Gaussian: discrete traits

B. Teo, P. Bastide, C. Ané (2024+), Leveraging graphical model
techniques to study evolution on phylogenetic networks. in prep.
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Nielsen, Vaughn, Leppälä, et al. 2023. PLOS Genetics. 19:e1010410.

Pybus, Suchard, Lemey, et al. 2012. Proceedings of the National Academy of
Sciences. 109:15066–15071.
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Brownian Motion on a Tree
Brownian Motion on a Network
Naive Variance Computation

Pre-Order Computation
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Root: C11 = 0

Tree node i with parent a{
Cij = Caj j < i

Cii = Caa + ℓa

Hybrid node i with parents a and b
Cij = γaCaj + γbCbj j < i

Cii = γ2a (Caa + ℓa)

+ γ2b(Cbb + ℓb)

+ 2γaγbCab

back
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Brownian Motion on a Tree
Brownian Motion on a Network
Naive Variance Computation

Pre-Order Computation

13

12

11

9

8

1

2

3

7

106

4

5

a

b
i

Xi = γa(Xa + ϵa) ϵa ∼ N (0, ℓa)

+ γb(Xb + ϵb) ϵb ∼ N (0, ℓb)

Pre-order

Root: C11 = 0

Tree node i with parent a{
Cij = Caj j < i

Cii = Caa + ℓa

Hybrid node i with parents a and b
Cij = γaCaj + γbCbj j < i

Cii = γ2a (Caa + ℓa)

+ γ2b(Cbb + ℓb)

+ 2γaγbCab

back

Benjamin Teo, Paul Bastide, Cécile Ané Phylogenetic Networks 5/9



Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Integrated Brownian Motion
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Integrated OU
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Loopy BP

Loopy BP

• Choose a schedule

• Pass messages until convergence (not guaranteed)

• q =

∏
Ci∈V∗ βi∏

{Ci ,Cj}∈E∗ µi,j
≈ p(Xv , v /∈ Vobs |Xv , v ∈ Vobs)

First approximation: ELBO

log p(Xv , v ∈ Vobs) ≥ Eq[log pθ(Xv , v ∈ V )]−Eq[log q(Xv , v /∈ Vobs)]

Energy functional

F (pθ, q) =
∑

Ci∈V∗

Eq(logψi )+
∑

Ci∈V∗

Eq[− log βi ]−
∑

{Ci ,Cj}∈E∗

Eq[− logµi ,j ]
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Datasets
Trait Evolution on Networks

Graphical Models and Belief Propagation

Linear Gaussian Models
Belief Propagation
Loopy Belief Propagation

Loopy BP

Second approximation: localization

Eq(logψi ) ≈ Eβi
(logψi )

Factored Energy functional

F̃ (pθ, q) =
∑

Ci∈V∗

Eβi
(logψi )+

∑
Ci∈V∗

Eβi
[− log βi ]−

∑
{Ci ,Cj}∈E∗

Eµi,j [− logµi ,j ] .

Loopy BP at calibration

log p(Xv , v ∈ Vobs) ≈ F̃ (pθ, q)

back
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