From Phylogenetic to Bayesian Networks

Benjamin Teo¹, Paul Bastide², Cécile Ané^{1,3}

- ¹ Department of Statistics, University of Wisconsin-Madison
- ² IMAG, Université de Montpellier, CNRS
- ³ Department of Botany, University of Wisconsin-Madison

Statistiques au Sommet de Rochebrune, Mars 2024

Datasets

Polemonium

Figure: Teo et al. (2023)

Polemonium eddyense

Polemonium reptens

Polemonium carneum

(Teo et al., 2023)

Flowers

Flowers Viruses Population

West Nile Virus (WNV)

(Pybus et al., 2012)

Coronaviruses

(Müller et al., 2022)

Viruses

Figure: Müller et al. (2022)

Figure: Nielsen et al. (2023)

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Tree

(Felsenstein, 1985)

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Tree

(Felsenstein, 1985)

BM Variance: Shared Evolution Time

 $\mathbb{C}\mathrm{ov}[Y_4; Y_5] = \sigma^2 C_{45}$

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Tree

BM Variance: Shared Evolution Time

 $\mathbb{C}\mathrm{ov}[Y_4;Y_5] = \sigma^2 C_{45}$

$$C_{45} = \ell_{e_8} + \ell_{e_9} = \sum_{e \in \{e_8, e_9\}} \ell_e$$

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Tree

(Felsenstein, 1985)

BM Variance: Shared Evolution Time

 $\mathbb{C}\mathrm{ov}[Y_4;Y_5] = \sigma^2 C_{45}$

$$C_{45} = \ell_{e_8} + \ell_{e_9} = \sum_{e \in \{e_8, e_9\}} \ell_e$$
$$= \sum_{e \in p_4 \cap p_5} \ell_e$$

 p_i : path from root to tip *i*: $p_4 = \{e_8, e_9, e_4\}$ $p_5 = \{e_8, e_9, e_5\}$

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Hybrids

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Hybrids

Leopard

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Hybrids

Leopard

Lion

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Hybrids

Leopard

Lion

Leopon

Benjamin Teo, Paul Bastide, Cécile Ané

Phylogenetic Networks

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Network

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Network

BM Variance: "Shared Evolution Time"

Problem Path to Y_6 not unique

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Network

BM Variance: "Shared Evolution Time"

 $C_{16} = \ell_{e_{11}} \times \gamma \qquad \qquad \qquad \mathcal{P}_{6} = \begin{cases} \{e_{11}, e_{13}, e_{6}\}, \\ \end{cases} \end{cases}$

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Network

BM Variance: "Shared Evolution Time"

 $\begin{array}{ll} C_{16} = \ell_{e_{11}} & \times \gamma \\ + 0 & \times (1 - \gamma) \end{array} \qquad \qquad \mathcal{P}_{6} = \begin{cases} \{e_{11}, e_{13}, e_{6}\}, \\ \{e_{8}, e_{12}, e_{12}, e_{6}\} \end{cases}$

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Brownian Motion on a Network

BM Variance: "Shared Evolution Time"

$$C_{16} = \ell_{e_{11}} \times \gamma \qquad C_{ij}^{\text{net}} = \\ + 0 \times (1 - \gamma) \qquad \sum_{\substack{p_i \in \mathcal{P}_i \\ p_j \in \mathcal{P}_j}} \left(\prod_{e \in p_i} \gamma_e\right) \left(\prod_{e \in p_j} \gamma_e\right) \sum_{e \in p_i \cap p_j} \ell_e$$

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Distribution

BM on a Network

$$\mathbf{Y} = \mu \mathbf{1} + \sigma \mathbf{E}$$
 $\mathbf{E} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{\mathbf{Y}, \mathbf{Y}})$

Inference: $\hat{\mu}$, $\hat{\sigma}$ Ancestral State Reconstruction: p(Z|Y)

Formulas: need to invert (non sparse) matrix $C_{Y,Y}$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Heredity rules

Brownian Motion

(Felsenstein, 1985)

$$X_i \mid X_{\mathsf{pa}(i)} \sim \mathcal{N}(X_{\mathsf{pa}(i)}; \sigma^2 \ell_i)$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Heredity rules

Ornstein-Uhlenbeck

(Hansen, 1997)

$$X_i \mid X_{\mathsf{pa}(i)} \sim \mathcal{N}(e^{-lpha \ell_i} X_{\mathsf{pa}(i)} + (1 - e^{-lpha \ell_i}) eta_i; rac{\sigma^2}{2lpha} (1 - e^{-2lpha \ell_i}))$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Heredity rules

Early Burst

(Harmon et al., 2010)

$$X_i \mid X_{\mathsf{pa}(i)} \sim \mathcal{N}(X_{\mathsf{pa}(i)}; \frac{\sigma^2}{r} e^{rt_{\mathsf{pa}(i)}}(e^{r\ell_i} - 1))$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Heredity rules

Within species variance

$$X_i \mid X_{\mathsf{pa}(i)} \sim \mathcal{N}(X_{\mathsf{pa}(i)}; \sigma_e^2)$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

General Model on a Tree

BM:
$$\mathbf{q}_j = \mathbf{I}_p$$
, $\mathbf{r}_j = \mathbf{0}_p$, $\mathbf{\Sigma}_j = \ell_j \mathbf{R}$.
OU: $\mathbf{q}_j = e^{-\mathbf{A}\ell_j}$, $\mathbf{r}_j = (\mathbf{I}_p - e^{-\mathbf{A}\ell_j})\beta_j$, $\mathbf{\Sigma}_j = \mathbf{S} - e^{-\mathbf{A}\ell_j}\mathbf{S}e^{-\mathbf{A}^T\ell_j}$.
Measurement errors, drift, shifts, Integrated OU...

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

General Model on a Tree

BM:
$$\mathbf{q}_j = \mathbf{I}_p$$
, $\mathbf{r}_j = \mathbf{0}_p$, $\mathbf{\Sigma}_j = \ell_j \mathbf{R}$.
OU: $\mathbf{q}_j = e^{-\mathbf{A}\ell_j}$, $\mathbf{r}_j = (\mathbf{I}_p - e^{-\mathbf{A}\ell_j})\beta_j$, $\mathbf{\Sigma}_j = \mathbf{S} - e^{-\mathbf{A}\ell_j}\mathbf{S}e^{-\mathbf{A}^T\ell_j}$.
Measurement errors, drift, shifts, Integrated OU...

Question: what happens at hybrids ?

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Hybridizations

$$\begin{split} \mathbf{X}_i &= \gamma_a (\mathbf{q}_a \mathbf{X}_a + \mathbf{r}_a + \boldsymbol{\epsilon}_a) & \boldsymbol{\epsilon}_a \sim \mathcal{N}(0, \boldsymbol{\Sigma}_a) \\ &+ \gamma_b (\mathbf{q}_b \mathbf{X}_b + \mathbf{r}_b + \boldsymbol{\epsilon}_b) & \boldsymbol{\epsilon}_b \sim \mathcal{N}(0, \boldsymbol{\Sigma}_b) \end{split}$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Hybridizations

$$\begin{aligned} \mathbf{X}_i &= \gamma_a (\mathbf{q}_a \mathbf{X}_a + \mathbf{r}_a + \boldsymbol{\epsilon}_a) & \boldsymbol{\epsilon}_a \sim \mathcal{N}(0, \boldsymbol{\Sigma}_a) \\ &+ \gamma_b (\mathbf{q}_b \mathbf{X}_b + \mathbf{r}_b + \boldsymbol{\epsilon}_b) & \boldsymbol{\epsilon}_b \sim \mathcal{N}(0, \boldsymbol{\Sigma}_b) \end{aligned}$$

$$\mathbf{X}_{i} = \begin{pmatrix} \gamma_{a}\mathbf{q}_{a} & \mathbf{0} \\ \mathbf{0} & \gamma_{b}\mathbf{q}_{b} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{a} \\ \mathbf{X}_{b} \end{pmatrix} + \gamma_{a}\mathbf{r}_{a} + \gamma_{b}\mathbf{r}_{b} + \gamma_{a}\epsilon_{a} + \gamma_{b}\epsilon_{b}$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Hybridizations

$$\begin{aligned} \mathbf{X}_i &= \gamma_a (\mathbf{q}_a \mathbf{X}_a + \mathbf{r}_a + \boldsymbol{\epsilon}_a) & \boldsymbol{\epsilon}_a \sim \mathcal{N}(0, \boldsymbol{\Sigma}_a) \\ &+ \gamma_b (\mathbf{q}_b \mathbf{X}_b + \mathbf{r}_b + \boldsymbol{\epsilon}_b) & \boldsymbol{\epsilon}_b \sim \mathcal{N}(0, \boldsymbol{\Sigma}_b) \end{aligned}$$

$$\mathbf{X}_{i} = \begin{pmatrix} \gamma_{a}\mathbf{q}_{a} & \mathbf{0} \\ \mathbf{0} & \gamma_{b}\mathbf{q}_{b} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{a} \\ \mathbf{X}_{b} \end{pmatrix} + \gamma_{a}\mathbf{r}_{a} + \gamma_{b}\mathbf{r}_{b} + \gamma_{a}\epsilon_{a} + \gamma_{b}\epsilon_{b}$$

$$\mathbf{X}_{j} \mid \mathbf{X}_{\mathsf{pa}(j)} \sim \mathcal{N}\left(\mathbf{q}_{j}\mathbf{X}_{\mathsf{pa}(j)} + \mathbf{r}_{j}, \ \mathbf{\Sigma}_{j}
ight)$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Graphical Model

DAG: Trait evolution \rightarrow linear Gaussian distribution Factors: node v givent its parents u

$$\phi_{\mathbf{v}}(X_{\mathbf{v}}|X_{u}, heta;u\in\mathsf{pa}(\mathbf{v}))\sim\mathcal{N}\left(\mathbf{q}_{j}\mathbf{X}_{\mathsf{pa}(j)}+\mathbf{r}_{j},~\mathbf{\Sigma}_{j}
ight)$$

Joint Distribution:

$$p_{ heta}(X_{v}; v \in V) = \prod_{v \in V} \phi_{v}(X_{v}|X_{u}, heta; u \in \mathsf{pa}(v))$$

Goal: compute

- likelihood $p_{ heta}(X_o; o \in V_{obs})$
- ancestral reconstruction $p_{ heta}(X_v|X_o; o \in V_{obs})$

Tool: Belief Propagation

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Clique Tree

Phylogenetic Tree

Clique Tree

Cluster graph:

- Nodes: clusters C_i (family preserving)
- Edges: Sepsets $S_{ij} \subseteq C_i \cap C_j$
- Running intersection: each variable defines a tree

Belief Propagation

Initialization:

- $\beta_i = \prod_{v:\text{scope}(v) \in C_i} \phi_v$
- $\mu_{i,j} = 1$

Message passing: from C_i to C_j

- μ˜_{i,j} = ∫_{Ci\Si,j} β_id(C_i \ S_{i,j})
 β_j ← β_j μ˜_{i,j}/μ_{i,j}
- $\mu_{i,j} \leftarrow \tilde{\mu}_{i,j}$

At calibration:

- $\beta_i = p(X_v, v \in C_i | X_o, o \in V_{obs})$
- $\mu_{i,j} = p(X_v, v \in S_{i,j} | X_o, o \in V_{obs})$

Clique tree: only two traversals are needed.

cluster beliefs sepset beliefs

(Koller and Friedman, 2009)

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Clique Tree

Phylogenetic Network

Clique tree construction:

• Moralization, triangulation, maximum spanning tree BP:

• Complexity depends on max clique size

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Implementation

Linear Gaussian

- Canonical form: $C(\mathbf{x}; \mathbf{K}, \mathbf{h}, g) = \exp\left(-\frac{1}{2}\mathbf{x}^T \mathbf{K} \mathbf{x} + \mathbf{h}^T \mathbf{x} + g\right)$
- Message passing: simple matrix operations

julå package PhyloGaussianBeliefProp.jl

- Interface for phylogenetic neworks
- Clique tree construction
- Likelihood and Ancestral state computation with BP
- Optimization using ForwardDiff.jl

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Gradient Computation

Fisher's Identity

Cappé et al. (2005)

$$\nabla_{\theta'} \left[\log p_{\theta'}(\mathbf{Y}) \right] |_{\theta' = \theta} = \mathbb{E}_{\theta} \left[\left. \nabla_{\theta'} \left[\log p_{\theta'}(\mathbf{X}_{v}; v \in V) \right] \right|_{\theta' = \theta} \mid \mathbf{Y} \right]$$

Linear Gaussian

- Only depends on $\mathbb{E}\left[\mathbf{X}_{v} \mid \mathbf{Y}\right]$ and $\mathbb{V}ar\left[\mathbf{X}_{v} \mid \mathbf{Y}\right]$
- sub-product of BP
- links with autodiff ?

Simple Brownian Motion: analytical estimator formulas

- for the multivariate BM and phylogenetic regression
- network equivalent to Ho and Ané (2014)

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

When is BP efficient ?

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Cluster Graph

Phylogenetic Network Cluster graph: Clique Tree

Cluster Graph

- Nodes: clusters C_i (family preserving)
- Edges: Sepsets $S_{ij} \subseteq C_i \cap C_j$
- Running intersection: each variable defines a tree

Construction:

- Bethe cluster graph, join graph, ...
- Trade-off complexity / accuracy

Loopy BP

Conclusion

General framework for trait evolution on networks

- Ecology: continuous traits
- Virology: phylogeography
- Admixture graph inference

Implementation

- julià package
- linear time estimators for the BM
- work on API and integration within julia

Perspectives

- loopy BP vs BP: network structures ?
- Deal with degeneracy: traits at tips
- Beyond Gaussian: discrete traits

B. Teo, P. Bastide, C. Ané (2024+), Leveraging graphical model techniques to study evolution on phylogenetic networks. *in prep.*

- Cappé, Moulines, Rydén. 2005. Springer Series in Statistics. New York, NY: Springer New York.
- Felsenstein. 1985. The American Naturalist. 125:1-15.
- Hansen. 1997. Evolution. 51:1341.
- Harmon, Losos, Davies, et al. 2010. Evolution. 64:2385-2396.
- Ho, Ané. 2014. Methods in Ecology and Evolution. 5:1133-1146.
- Koller, Friedman. 2009. The MIT Press.
- Müller, Kistler, Bedford. 2022. Nature Communications. 13:4186.
- Nielsen, Vaughn, Leppälä, et al. 2023. PLOS Genetics. 19:e1010410.
- Pybus, Suchard, Lemey, et al. 2012. Proceedings of the National Academy of Sciences. 109:15066–15071.
- Teo, Bastide, Ané. 2024+. in prep. .
- Teo, Rose, Bastide, et al. 2023. Bulletin of the Society of Systematic Biologists. 3:1–29.

Photo Credits

- Polemonium eddyense: Gail (iNaturalist user ribes2018), CC BY 4.0 https://creativecommons.org/licenses/by/4.0, via Wikimedia Commons

- Polemonium carneum: Adamschneider, CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia
Commons

- Polemonium reptens: Photo by and (c)2007 Derek Ramsey (Ram-Man),

GFDL 1.2 http://www.gnu.org/licenses/old-licenses/fdl-1.2.html, via Wikimedia Commons

- Patrick Giraud (edited to fix white balance), CC BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/, via Wikimedia Commons

- Clément Bardot, CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

Thank you for listening

Institut Montpelliérain Alexander Grothendieck

Appendices

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Pre-Order Computation

Root: $C_{11} = 0$

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Pre-Order Computation

Pre-order

Root: $C_{11} = 0$

Tree node i with parent a

$$\begin{cases} C_{ij} = C_{aj} & j < i \\ C_{ii} = C_{aa} + \ell_a \end{cases}$$

 $X_i = X_a + \epsilon_a$ $\epsilon_a \sim \mathcal{N}(0, \ell_a)$

а

Brownian Motion on a Tree Brownian Motion on a Network Naive Variance Computation

Pre-Order Computation

Pre-order

Root: $C_{11} = 0$

Tree node i with parent a

$$\begin{cases} C_{ij} = C_{aj} & j < i \\ C_{ii} = C_{aa} + \ell_a \end{cases}$$

 $\int C_{ij} = \gamma_a C_{aj} + \gamma_{aj} C_{aj}$

 $\begin{aligned} X_i &= \gamma_a(X_a + \epsilon_a) & \epsilon_a \sim \mathcal{N}(0, \ell_a) \\ &+ \gamma_b(X_b + \epsilon_b) & \epsilon_b \sim \mathcal{N}(0, \ell_b) \end{aligned}$

Benjamin Teo, Paul Bastide, Cécile Ané

Hybrid node i with parents a and b

$$\begin{cases} C_{ij} = \gamma_a C_{aj} + \gamma_b C_{bj} & j < i \\ C_{ii} = \gamma_a^2 (C_{aa} + \ell_a) \\ + \gamma_b^2 (C_{bb} + \ell_b) \\ + 2\gamma_a \gamma_b C_{ab} \end{cases}$$

Phylogenetic Networks

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Integrated Brownian Motion

IBM heredity

$$\begin{pmatrix} V_i \\ X_i \end{pmatrix} \begin{vmatrix} \begin{pmatrix} V_{\mathsf{pa}(i)} \\ X_{\mathsf{pa}(i)} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 1 & 0 \\ \ell_i & 1 \end{pmatrix} \begin{pmatrix} V_{\mathsf{pa}(i)} \\ X_{\mathsf{pa}(i)} \end{pmatrix}; \sigma^2 \begin{pmatrix} \ell_i & \ell_i^2/2 \\ \ell_i^2/2 & \ell_i^3/3 \end{pmatrix} \right)$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Integrated OU

Benjamin Teo, Paul Bastide, Cécile Ané

Phylogenetic Networks

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Loopy BP

Loopy BP

- Choose a *schedule*
- Pass messages until convergence (not guaranteed)

•
$$q = \frac{\prod_{c_i \in \mathcal{V}^*} \beta_i}{\prod_{\{c_i, c_j\} \in \mathcal{E}^*} \mu_{i,j}} \approx p(X_v, v \notin V_{obs} | X_v, v \in V_{obs})$$

First approximation: ELBO

$$\log p(X_v, v \in V_{obs}) \geq \mathbb{E}_q[\log p_\theta(X_v, v \in V)] - \mathbb{E}_q[\log q(X_v, v \notin V_{obs})]$$

Energy functional

$$F(p_{\theta},q) = \sum_{C_i \in \mathcal{V}^*} \mathbb{E}_q(\log \psi_i) + \sum_{C_i \in \mathcal{V}^*} \mathbb{E}_q[-\log \beta_i] - \sum_{\{C_i,C_j\} \in \mathcal{E}^*} \mathbb{E}_q[-\log \mu_{i,j}]$$

Linear Gaussian Models Belief Propagation Loopy Belief Propagation

Second approximation: localization

$$\mathbb{E}_q(\log \psi_i) \approx \mathbb{E}_{\beta_i}(\log \psi_i)$$

Factored Energy functional

Loopy BP

$$ilde{\mathcal{F}}(p_{ heta},q) = \sum_{C_i \in \mathcal{V}^*} \mathbb{E}_{eta_i}(\log \psi_i) + \sum_{C_i \in \mathcal{V}^*} \mathbb{E}_{eta_i}[-\log eta_i] - \sum_{\{C_i,C_j\} \in \mathcal{E}^*} \mathbb{E}_{\mu_{i,j}}[-\log \mu_{i,j}] \;.$$

Loopy BP at calibration

$$\log p(X_{v}, v \in V_{obs}) pprox ilde{F}(p_{ heta}, q)$$

back