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Generative modeling
Assumption: (X1, . . . , XN ) in Rdx are samples from some unknown
distribution πdata.

What: generate synthetic instances of a target distribution πdata

Probabilistic model for generating molecular conformations (GeoDiff, Xu
et al., 2022)

GEOM (37 million molecular conformations annotated by energy):
generates new structures + chemical toolkit to calculate conformation
energy.

MOst times are USed multiple timEs (MOUSE)
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https://arxiv.org/pdf/2203.02923.pdf
https://arxiv.org/pdf/2203.02923.pdf


Generative modeling
Probabilistic time series imputation (CSDI, Tashiro et al., 2021)

Healthcare dataset in PhysioNet Challenge 2012 (4000 clinical time series
with 35 variables for 48 hours from intensive care unit).

Synthetic Data Generation for Privacy and Security (TabDDPM,
Kotelnikov et al., 2023), etc.

most Times ARe useD multiple times (TARDigrade)
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https://arxiv.org/pdf/2107.03502.pdf
https://proceedings.mlr.press/v202/kotelnikov23a/kotelnikov23a.pdf
https://proceedings.mlr.press/v202/kotelnikov23a/kotelnikov23a.pdf


Generative modeling

PierrE pictURes (PEUR) dataset (3 pictures, dataset being built slowly
but surely).
Improving corrupted data

most times are used multiple times (juste pour le plaisir)
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Generative modeling

1 Estimate πdata with a parametric probability distribution pθ.

1. Choose a suitable parametric form for pθ.

⇝ pθ is parameterized using a Neural Network.

⇝ pθ ≥ 0,
∫
pθ = 1 → constraints on the modelization.

2. Train pθ to approximate πdata using the samples
(X1, . . . , XN ) ∼ πdata: L(θ) =

∑N
i=1− log pθ(X

i).
⇝ Minimize L(θ) or an upperbound → find optimal parameter θ∗.

mOst times Used aRe multiple timeS (OURS)
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Controlled generation

2 Perform controlled generation using pθ∗ .

⇝ Target distribution: weight pθ∗ with a function x 7→ g(x)

ϕ(dx) =
g(x)pθ∗(dx)∫
g(z)pθ∗(dz)

,

⇝ Posterior sampling: g(x) = p(y|x).

mosT timEs aRe used MultIple TimES (TERMITES)
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Score-Based Generative Models (SGMs)

What: generate synthetic instances of a target distribution πdata

Why: challenges in modeling the complexity of real data, preventing
conventional parametric modeling or traditional maximum likelihood
methods.

Creating noise from data is easy; creating data from noise is
generative modeling. (Song et al., Score-Based Generative Modeling through

Stochastic Differential Equations)

Who: SGMs address this by

1. (forward phase) introducing progressively noise into the samples,

2. (backward phase) reversing the noising dynamics, with the help of a
score function usually learned using deep neural networks.

mOst times aRe usEd multiple times (OREortyx)
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Noise scheduling tuning
Practitioners’ corner: time-inhomogeneous SGMs - the noise schedule
has central role, as exhibited in numerical experiments.

[Chen et al., 2023]: performance of SGMs relies on the chosen noise
scheduling and optimal strategy varies depending on the task, e.g., image
sizes.

Figure: From Yang et al., 2023

MOst times are used multiple Times (MOTh)
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Estimating πdata with diffusion models
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Diffusion models: the forward process - DDPM [Ho et al., 2020]

Consider the forward noising process

Xk =
√

1− βkXk−1 +
√
βkZk , βk ∈ [0, 1], X0 ∼ πdata ,

where Zk ∼ N (0dx
, Idx

).

Figure: One sample X0:n.

Xk ∼ πk where 1 πk(dxk) :=
∫
πdata(dx0)N (dxk;

√
ᾱkx0, (1− ᾱk)Idx

).

(Xk)k≥0 is a discrete-time OU process.

MOst times are used muLtiple times (MOLa)
1ᾱk :=

∏k
j=1(1− βj).
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Diffusion models: the backward process
Note that π1:n|0(x1:n|x0) = πn|0(xn|x0)

∏n
k=2 πk−1|0,k(xk−1|x0, xk),

where πn|0(xn|x0) = N (xn; ᾱ
1/2
n x0, (1− ᾱn)I) and

πk−1|0,k(xk−1|x0, xk) = N
(
xk−1;µk(x0, xk), σ

2
k Id

)
,

with

µk(x0, xk) = ᾱ
1/2
k−1x0 + (1− ᾱk−1 − σ2

k)
1/2(xk − ᾱ

1/2
k x0)

/
(1− ᾱk)

1/2.

⇝ We know how to write the joint distribution of X1:n given X0.

⇝ Use this decomposition to turn noise into samples from π0.

pθ0:n(dx0:n) = pn(dxn)

n−1∏
k=0

pθk(dxk|xk+1) .

Most times are Used muLtiple timEs (MULE)
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Diffusion models: the backward process
⇝ Use this decomposition to turn noise into samples from π0.

pθ0:n(dx0:n) = pn(dxn)

n−1∏
k=0

pθk(dxk|xk+1) ,

where pn is a std Gaussian and

pθk(dxk|xk+1) = N (dxk;µ
θ
k+1(xk+1), βk+1Idx

)

with µθ
k+1(xk+1) obtained by replacing x0 in µk+1(x0, xk+1) with a

prediction

x̂0|k,θ(xk+1) := ᾱ
−1/2
k+1

(
xk+1 − (1− ᾱk+1)

1/2eθ(xk+1, k + 1)
)
.

Most times are Used multiple timeS (MUSkox)
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Diffusion models: the backward process

We use
pθk(dxk|xk+1) = N (dxk;µ

θ
k+1(xk+1), βk+1Idx

)

with µθ
k+1(xk+1) obtained by replacing x0 in µk+1(x0, xk+1) with a

prediction

x̂0|k,θ(xk+1) := ᾱ
−1/2
k+1

(
xk+1 − (1− ᾱk+1)

1/2eθ(xk+1, k + 1)
)
.

eθ∗(Xt, t) might be seen as the predictor of the noise added to X0 to
obtain Xt (in the forward pass) and justifies the prediction terminology.

The parameter θ is obtained by minimizing a variational loss between the
forward and backward joint distributions.

moSt timEs Are used muLtiple times (SEA Lion)
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Diffusion models: an illustration

Data distribution πdata Marginal p500

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.

moSt timEs Are used multiple timeS (SEA Slug) 14 / 26
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Data distribution πdata Marginal p150

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
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Diffusion models: an illustration

Data distribution πdata Marginal p100

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.

moSt timEs Are used multiple timeS (SEA Slug) 14 / 26



Diffusion models: an illustration

Data distribution πdata Marginal p80

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p70

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p50

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p40

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.

moSt timEs Are used multiple timeS (SEA Slug) 14 / 26



Diffusion models: an illustration

Data distribution πdata Marginal p20

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.

moSt timEs Are used multiple timeS (SEA Slug) 14 / 26



Diffusion models: an illustration

Data distribution πdata Marginal p15

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.

moSt timEs Are used multiple timeS (SEA Slug) 14 / 26



Diffusion models: an illustration

Data distribution πdata Marginal p5

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.

moSt timEs Are used multiple timeS (SEA Slug) 14 / 26



Diffusion models: convergence

In the first theoretical results: strong assumptions on the data
distribution (polynomial growth of the score), (de Bortoli et al., 2021):∥∥πdata − pθ0

∥∥
tv
≤ c0M exp(c1n) + c2

(
n−1 + n−1/2

)
,

where M quantifies the quality of the score approximation.

In most recent works, we only require πdata to have a finite relative
Fisher information w.r.t the standard Gaussian distribution, (Conforti et
al., 2023):

KL(πdata, p
θ
0) ≤ exp(−c0n)KL(N (0, Id), π0) +Mn+ c1h ,

Assuming that Eπdata
[∥∇ log(dπdata/dγd)∥2] <∞.

moSt times Are used multiple TimEs (SATanic leaf-tailed gEcko)
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https://arxiv.org/pdf/2106.01357.pdf
https://arxiv.org/abs/2308.12240
https://arxiv.org/abs/2308.12240


Guarantees on the approximation of πdata

Score-based training procedures
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SGM - Forward phase

Data noised using the Ornstein–Uhlenbeck (OU) process:

d
−→
X t = −

β(t)

2σ2

−→
X tdt+

√
β(t)dBt,

−→
X 0 ∼ πdata .

Fix T > 0, then,

KL
(
L
(−→
XT

)
, π∞

)
≲ exp

(
− 1

2σ2

∫ T

0

β(s)ds

)
KL (πdata, π∞)

with

KL (µ, ν) :=

∫
log

(
dµ(x)

dν(x)

)
µ(dx) .

Fokker-Planck for (pt)0≤t≤T + logarithmic Sobolev inequality +
Gronwall’s inequality

moSt tImeS Are uSed multiple Times (ScISSor-tailed flycaTcher)
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Time reversal

For pt := L(
−→
X t), (t, x) 7→ ∇ log pt(x) is the score function. We

consider the time reversal of the forward process, i.e., the process
satisfying

d
←−
X t =

(
β̄(t)

2σ2

←−
X t + β̄(t)∇ log pT−t

(←−
X t

))
dt+

√
β̄(t)dBt,

←−
X 0 ∼ pT ,

with β̄(t) := β(T − t). It satisfies(−→
X t

)
t∈[0,T ]

=
(←−
XT−t

)
t∈[0,T ]

.

In our setting,

L
(−→
XT

)
= L

(←−
X 0

)
≈ π∞ , L

(←−
XT

)
= L

(−→
X 0

)
≈ πdata .

moSt timEs Are uSed multiPle tImes (SEA SPIder)
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Modified score

Let p̃t := pt/φσ2 , with φσ2 the density of π∞. With respect to the
modified score function, the backward dynamics is

d
←−
X t =

(
− β̄(t)

2σ2

←−
X t + β̄(t)∇ log p̃T−t

(←−
X t

))
dt+

√
β̄(t)dBt,

←−
X 0 ∼ pT .

If the score (or the modified score) is known, we can (in theory) simulate
the backward process and get data from noise.

Let sθ : [0, T ]× Rd 7→ Rd be such that

Lscore(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2
]
,

with τ ∼ U(0, T ) independent of the forward process (
−→
X t)t≥0.

mosT times aRE usEd multiple times (TREE creeper)
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Discretization scheme
As the linear part can be simulated exactly, we consider the Exponential
Integrator scheme:

Let 0 =: t0 ≤ t1 ≤ · · · ≤ tN := T . Consider

d
←−
X θ

t = β̄(t)

(
− 1

2σ2

←−
X θ

t + s̃θ
(
T − tk,

←−
X θ

tk

))
dt+

√
β̄(t)dBt ,

for t ∈ [tk, tk+1), with s̃θ(t, x) := sθ(t, x) + x/σ2, and
←−
X θ

0 ∼ π∞.

We denote π̂
(β,θ)
N the marginal probability density of

←−
X θ

T .

The loss function is built using the conditional score:

L(θ) = E
[
ατ

∥∥∇ log pτ |0(Xτ |X0)− sθ(τ,Xτ )
∥∥2] .

most times aRe used multiple tImes (RIver otter)
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Assumptions
H1 The noise schedule is continuous, non decreasing and such that∫ ∞

0

β(t)dt =∞ .

H2 The data distribution has finite Fisher information w.r.t. the normal
distribution, i.e.,

I(πdata|π∞) :=

∫ ∥∥∥∥∇ log

(
dπdata

dπ∞

)∥∥∥∥2

dπdata <∞ .

H3 The parameter θ and the schedule β satisfy

E
[
exp

{
1

2

∫ T

0

β̄(t)
∥∥∥(s̃(T − t,

←−
X t

)
− s̃θ

(
T − tk,

←−
X tk

))∥∥∥2

dt

}]
<∞ .

most times aRe used multiple tImes (RIver otter)
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Why it works

Q̄β,θ
N ∈ P(C([0, T ],Rd)): path measure (backward diffusion). π̂

(β,θ)
N the

marginal probability density of
←−
X θ

T .

By the data processing inequality,

KL
(
πdata

∣∣∣∣∣∣π̂(β,θ)
N

)
= KL

(
pTQT

∣∣∣∣∣∣π̂(β,θ)
N

)
≤ KL

(
pTQT

∣∣∣∣∣∣π∞Q̄β,θ
N

)
.

By applying Girsanov theorem,

KL
(
πdata∥π̂(β,θ)

N

)
≤ KL (pT ∥φσ2)

+
1

2

∫ T

0

β̄(t)E

[∥∥∥∥∥∇ log p̃τt

(←−
X t

)
− s̃θ

(
τk,
←−
X tk

)∥∥∥∥∥
2]

dt .

most times aRe used multiple tImes (RIver otter)
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Upper bound
Theorem
Assume that H1, H2 and H3 hold. Then,

KL
(
πdata

∣∣∣∣∣∣π̂(β,θ)
N

)
≤ E1(β) + E2(θ, β) + E3(β) ,

where

E1(β) := KL (πdata||π∞) exp

{
− 1

σ2

∫ T

0

β(s)ds

}
,

E2(θ, β) :=
N∑

k=1

∫ tk+1

tk

β(t)dtE
[∥∥∥∇ log p̃T−tk

(−→
XT−tk

)
− s̃θ

(
T − tk,

−→
XT−tk

)∥∥∥2
]
,

E3(β) := 2hβ(T ) I(πdata|π∞) ,

with h := supk∈{1,...,N}(tk − tk−1) and t0 := 0.

most times aRe used multiple tImes (RIver otter) 23 / 26



Gaussian case

Let the true distribution be Gaussian in dimension d = 50 with mean 1d

and different choices of covariance structure.

1. (Isotropic) Σ(iso) = 0.5Id.

2. (Heteroscedastic) Σ(heterosc) ∈ Rd×d is a diagonal matrix such that

Σ
(heterosc)
jj = 10 for 1 ≤ j ≤ 5, and Σ

(heterosc)
jj = 0.1 otherwise.

3. (Correlated) Σ(corr) ∈ Rd×d is a full matrix whose diagonal entries
are equal to one and the off-diagonal terms are

Σ
(corr)
jj′ = 1/

√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.

most times aRe used multiple tImes (RIver otter)
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Comparison with existing literature
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(a) Isotropic setting (b) Heteroscedastic setting (c) Correlated setting

Figure: Comparison of the empirical KL divergence between πdata and the
generative distribution π̂

(β,θ)
N w.r.t. SGM for βa⋆ , the VPSDE model and the

one with a cosine schedule, presented in Chen et al. (2023).

▶ Optimizing the noise schedule has an impact even with simple
parametrization of the β scheduling.

most times aRe used multiple tImes (RIver otter)
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Conclusion and perspectives

⇝ Optimizing the noise schedule allows to optimize virtually all
score-based samplers.

⇝ Constants in the upper bound are crucial and should be taken care
of.

⇝ Important open problem: design πdata tailored (Swift) to π∞ (then
maybe use Langevin for the forward).

most times aRe used multiple tImes (RIver otter)
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