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Modelling individual genomic profile, large L

Pure Jump Continuous-time Markov model:

Each profile Xi is a continuous time Markov process Xi = {Xi(t)}0≤t≤L :

States: 0 = normal 1 = alteration

Transition rates: λ : 0 → 1 µ : 1 → 0.

Consequence.
Mean length of normal regions = 1/λ and altered regions = 1/µ.

Individual Profile

Position

0 0.2 0.4 0.6 0.8 1

2



Cumulative Cohort profiles

We are interested in the alterations shared by
a large proportion of patients.

Define the cumulative cohort profile as Sn =∑n
i=1 Xi .

Focus on the length E1, E2, .... of the excur-
sions above a of Sn on [0, 1].

Goal : characterizing the distribution of

Ea,Sn∗ (1) = max
i
Ei(1)

P
(
Ea,Sn∗ > l

)
=??
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A True Sea Snake

Let’s Dare to say it in French Un véritable serpent de mer
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Rats do not leave the ship
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Theoretical behaviour with large
number of patients



Cumulative process Sn

The process {Sn(t), t ∈ [0, 1]} counts the number of altered profiles at time t. Assuming λ = µ, the
jumps U = (U(n)

1 ,U(n)
2 , . . .) occur at exponential times λn.
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Cumulative process Sn

The process {Sn(t), t ∈ [0, 1]} counts the number of altered profiles at time t. Assuming λ = µ, the
jumps U = (U(n)

1 ,U(n)
2 , . . .) occur at exponential times λn.

It is a Markovian birth and death process with states {0, 1 . . . , n} and transition rates

i → i+ 1 (’birth’ of an alteration) : λi = (n− i)× λ

i → i− 1 (death = back to normal) : µi = i× λ
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Cumulative process Sn

The process {Sn(t), t ∈ [0, 1]} counts the number of altered profiles at time t. Assuming λ = µ, the
jumps U = (U(n)

1 ,U(n)
2 , . . .) occur at exponential times λn.

In the stationary case,

Xi(0) ∼ B
(
1
2

)
, i = 1, . . . n,

Define τ = 2λ, p = 0.5, we have:

E [Sn(t)] =
n
2
, V [Sn(t)] =

n
4
, Cov [Sn(s), Sn(s+ t)] =

n
4
e−τ t

Consider
Z(n)(t) =

Sn(t)− n/2√
n/4

,

The perfect suspect Z = (Z(t), 0 ≤ t ≤ 1) solution to

dZ(t) = −τZ(t)dt +
√
2τdW(t), Z(0) ∼ N (0, 1).
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Cumulative process S(n)

Sketch of proof :

I (Z(n)(t1), . . . , Z(n)(tk)) converges to a Gaussian vector,

k∑
j=1

αjZ(tj) =
n∑
i=1

k∑
j=1

αj
Xi(tj)− 0.5√

n/4
∀(α1, . . . , αC) ∈ Rk

I The covariance function is

ρ(s, s+ t) = Cov(Z(n)(s), Z(n)(s+ t)) = ρ(t) = e−τ t

I The unique stationnary Gaussian process with covariance function ρ(t) = e−τ t is the
Ornstein Uhlenbeck process.

I Tightness

From a practical point of view, the rate would be useful !
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Step 0 : Understanding Kubilius

5 years of scientific wandering and convergence rate as rewarding as N1/23 , which might require
large cancer cohort.
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Step 0 : Understanding Kubilius

Finally, getting inspired by Kęstutis Kubiliusa (6 citations in Google Scholar).

Theorem ([Kub94])
Let (ξ(n)k ,F (n)

k ) be a sequence of square-integrable martingale differences a.s bounded by n−1/2M.
Denote

Wn(t) =
n∑
i

ξ
(n)
i +

tV(n)
2

n − V(n)
2

k

V(n)
2

k+1 − V(n)
2

k

ξ
(n)
i , if

V(n)
2

k

V(n)
2

n

< t ≤
V(n)

2

k+1

V(n)
2

n

where V(n)
2

k =
∑k

i=1 E
{
(ξ

(n)
i )2|F (n)

i−1

}
. There exists a constant C such that

π(W(n),W) < C ln n
{
n−1/4 + inf0<ε<1

(
ε+ P(|V(n)

2

n − 1| > ε2)

)}
.

π stands for the Prokhorov distance.

aK Kubilius. “Rate of convergence in the invariance principle for martingale difference arrays”. In: Lithuanian Mathematical Journal 34.4
(1994), pp. 383–392.
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Step 0 : Understanding Kubilius

I ξ
(n)
k square-integrable martingale
differences:

E

 j∑
k=1

ξ
(n)
k |F (n)

j−1

 = E
[
ξ
(n)
j |F (n)

j−1

]
+

j−1∑
k=1

ξ
(n)
k

E
[
ξ
(n)
j |F (n)

j−1

]
= 0

I The Prokhorov distance π, U et V deux
variables à valeurs dans le même
espace,

π(U, V) ≤ ε iff P{U ∈ A} ≤ P{V ∈ Aε}+ε

I Handling time

T(n)k =
V(n)

2

k

V(n)
2

n

, V(n)
2

k =
k∑
i=1

E
[
(ξ

(n)
i )2|F (n)

i−1

]

tT(n)1 T
(n)
2 T(n)3 T(n)4

ξ
(n)
1

ξ
(n)
2

ξ
(n)
3

ξ
(n)
4
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Action Plan

I Z(n)k = S(n)(U(n)
k ) for k = 1, . . .m (m the number of jumps)

I Z(n)k+1 = Z(n)k + 2√
nυk+1, P(υk+1 = −1) = 1− P(υk+1 = 1) = Z(n)k

2
√
n + 1

2 ,

I E
[
Z(n)k+1|F

(n)
k

]
=

(
1−

2
n

)
Z(n)k

I ξ
(n,m)
k+1 = 1

2

√
n
m

(
Z(n)k+1 −

(
1− 2

n
)
Z(n)k

)
, 0 ≤ k ≤ m− 1

I Prokhorov:

P(ωn ∈ A) =P(ωn ∈ A, ‖ωn − ω‖∞ ≤ ε) + P(ωn ∈ A, ‖ωn − ω‖∞ > ε)

≤ P(ω ∈ Aε) + P(‖ωn − ω‖∞ > ε)
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Step 1: Some random process converges to a Brownian motion

Theorem
Let n and m be two integers satisfying

λ1m ≤ n ≤ λ2m, with 0 < λ1 ≤ λ2 ≤ n1/4,

W(n,m)
k =

k∑
i=1

ξ
(n,m)
i , 1 ≤ k ≤ m, W(n,m)

0 = 0.

Then, there exists a constant C1(λ2) such that

π
(
W(n,m),W

)
≤ C1(λ2)n−1/4 ln (n).
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Step 2: Getting closer from the original process

Let’s consider Y(n,m) = (Y(n,m)(t), 0 ≤ t < 1):

Y(n,m)(t) = Z(n)k +
t − t(n,m)

k

t(n,m)
k+1 − t(n,m)

k

(
Z(n)k+1 − Z(n)k

)
, t(n,m)

k ≤ t < t(n,m)
k+1 .

The integral representation of a Ornstein uhlenbeck process

Z(t) = Z0e−τ t +
√
2τW(t)−

√
2τ 3/2

∫ t

0
e−τ(t−s)W(s)ds, Z0 ∼ N (0, 1).

Let’s consider

Fn,m(ω, x)(t(n,m)
k ) = x

(
1−

2
n

)k
+ 2
√
m
n

(
1−

2
n

)−1
ω(t(n,m)

k )

− 4
(
1−

2
n

)−1√m
n

 1
n

k∑
i=1

(
1−

2
n

)k−i
ω(t(n,m)

i )

 (1)
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Step 2: Getting closer from the original process

Theorem
Given the previous notations

Y(n,m) = Fn,m(W(n,m), Z0),

and if
∣∣∣Mn − 1

∣∣∣ ≤ n−1/3, then there exists a constant C such that

π(Y(n,m), Y) ≤ Cn−1/4 ln (n).
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Step 3: Finally ....

By controling the distance between t(n,m)
k and U(n)

k , we finally have

Theorem
For any κ in ]0, 1/4[, there exists a constant C which only depends on κ such that

π
(
Z(n), Z

)
≤

C
nκ

.
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Did we make any progress ?
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Convergence of the longest excursion

Some care is required as the excursion is not obviously a continuous functionnal of the process

16



Convergence of the longest excursion

Some care is required as the excursion is not obviously a continuous functionnal of the process

−0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

z

16



Convergence of the longest excursion

Some care is required as the excursion is not obviously a continuous functionnal of the process

0.0

0.5

1.0

1.5

2.0

0.2 0.3 0.4 0.5 0.6
x

z

16



Convergence of the longest excursion

Some care is required as the excursion is not obviously a continuous functionnal of the process

P
(
Ea,Sn∗ > `

)
= P

(
sup

0≤s≤t−l

{
inf

s≤u<s+l
Sn(u)

}
> a
)

This proves the convergence as the event of interest is expressed through a continuous
functionnal, but does nt control the rate

16



Convergence of the longest excursion

Let’s denote H(ω) = sup0≤s≤t−l

{
inf

s≤u<s+l
ω(u)

}
,

We hope π
(
H(Z(n)),H(Z)

)
≤ εn, i.e. ∀ closed set A, P(H(Z(n)) ∈ A) ≤ P(H(Z) ∈ Aε)

P(H(Z(n)) > a) = P(Z(n) ∈ A), with A = {ω,H(ω) > a}

≤ P (Z ∈ Aεn ) + εn,

≤ P (Z ∈ A) + P
(
Z ∈ Aεn ∩ Ā

)
+ εn,

≤ P (H(Z) > a) + P
(
Z ∈ Aεn ∩ Ā

)
+ εn.

{
Z ∈ Aεn ∩ Ā

}
= {∃ω,H(ω) > a, ‖ω − Z‖ ≤ εn,H(Z) ≤ a} ⊂ {a− εn < H(Z) ≤ a}

Proposition
There exists c > 0 and a sequence εn decreasing to zero such that

Pλ(a− εn < H(Z) ≤ a) ≤ cεn
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The smart litle trick

Let’s denote Fsy(a) = PZ(0)=y
(
∀t ≤ s− l, inft≤u≤t+l Z(u) ≤ a

)
,

We control Fsy(a)− Fsy(a− ε), reasonning by induction and conditioning on Z(kl)
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Finally

Theorem
There exists C and κ ∈ [0, 1/4[, such that

π(H(Z(n)),H(Z)) ≤ C
nκ
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Conclusion

The bad news
I We prove the convergence of the pure
jumps Markov Process to an Ornstein
Uhlenbeck Process,

I as well as the convergence of the
longest excursion, with the same rate
of convergence

I with a descent rate
I in only 10 years,
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(
Ea,Sn∗ > l

)
by P

(
Ea,Z∗ > l

)
,

I but P
(
Ea,Z∗ > l

)
is only known for

a = 0,
I We have good plan for the 10 years to
come.
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Convergence of the longest excursion

Thank you !

See You in 10 years !
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Practical approach



Practical evaluation of P(Ea,Z∗ > s) via MC approach

Several alternatives:

1. Sample a discretized version, named Zδ of Z,

2. Sample the first hitting time σa according to [Alili+2005] and then discretized Z,

3. Use splitting rare events technics to sample σa and then use previous discretized Z,

4. Use splitting rare events technics to sample σa and use theoretical work for Importance
sampling approach.
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Density of σa starting from x.

px, a(r) =
|a− x|
√
2πr3

exp

(
−

τ

2
(a2 − x2 − r) −

(a− x)2

2r

)

× Eexp
(
−

τ 2

2

∫ r

0
(Bes0,a−x,r(u) − a)2 du

)
,

where Bes0,a−x,r is a three dimensional Bessel bridge over [0, r] between 0 and a− x.
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