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Modelling individual genomic profile, large L

Pure Jump Continuous-time Markov model:

Each profile X; is a continuous time Markov process X; = {X;(t) }o<t<i:

States: 0 = normal 1 = alteration

Transition rates: A:0—1 w:1—0.

Consequence.
Mean length of normal regions = 1/X and altered regions = 1/ p.

Individual Profile

Position




Cumulative Cohort profiles

We are interested in the alterations shared by
a large proportion of patients.

Define the cumulative cohort profile as S, =
i X

Focus on the length £, E;, .... of the excur-
sions above a of S, on [0, 1].

Ind Profiles

Goal : characterizing the distribution of

E®®1(1) = max £;(1)
1

Cum Profile

P(E2 > 1) =77




Let's Dare to say it in French Un véritable serpent de mer




Rats do not leave the ship




Theoretical behaviour with large
number of patients




Cumulative process S,

The process {Sn(t),t € [0,1]} counts the number of altered profiles at time t. Assuming A = p, the
jumps U = (U, U5™, . ..) occur at exponential times An.



Cumulative process S,

The process {Sn(t),t € [0,1]} counts the number of altered profiles at time t. Assuming A = p, the
jumps U = (U, U5™, . ..) occur at exponential times An.
It is a Markovian birth and death process with states {0,1...,n} and transition rates

i—i4+1 ('birth’ of an alteration) : A= (h=i)xA

i —i—1 (death = backto normal) : wi o= ixXA



Cumulative process S,

The process {Sn(t),t € [0,1]} counts the number of altered profiles at time t. Assuming A = p, the
jumps U = (U5 ,U2”)7 ...) occur at exponential times An.

In the stationary case,
1 .
X,'(O)~B(7), i=1,...n,

Define 7 = 2\, p = 0.5, we have:

n n n
E[(0] =3, VIS =7, Cov[Sa(s),Sn(s+ )] = e
Consider
Sn(t) —n/2
n/4
The perfect suspect Z = (Z(t), 0 < t < 1) solution to

Z(t) =

)

dz(t) = —7Z(t)dt + V2rdW(t), Z(0) ~ N(0,7).



Cumulative process S("

Sketch of proof:

> (Z((ty),...,Z("(t,)) converges to a Gaussian vector,

n Rk X(t) .
Z 2t => > a—t—— F Y(a,...,ac) €R

j=1 i=1 j=1

» The covariance function is
p(5,5+ 1) = Cov(Z(5), ZM(s + 1)) = p(t) = e~

> The unique stationnary Gaussian process with covariance function p(t) = e~ 7t is the
Ornstein Uhlenbeck process.

> Tightness
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Sketch of proof:

> (Z((ty),...,Z("(t,)) converges to a Gaussian vector,

n Rk X(t) .
Z 2t => > q F Y(a,...,ac) €R

j=1 i=1 j=1

» The covariance function is
p(5,5+ 1) = Cov(Z(5), ZM(s + 1)) = p(t) = e~

> The unique stationnary Gaussian process with covariance function p(t) = e~ 7t is the
Ornstein Uhlenbeck process.

> Tightness

From a practical point of view, the rate would be useful !



Step 0 : Understanding Kubilius

5 years of scientific wandering and convergence rate as rewarding as N'/2, which might require
large cancer cohort.



Step 0 : Understanding Kubilius

Finally, getting inspired by Kestutis Kubilius? (6 citations in Google Scholar).

Theorem ([Kub94])

Let (5,(?"), J-‘,E”)) be a sequence of square-integrable martingale differences a.s bounded by n=1/2.
Denote

2 2 2
/O _ ) YO o)
W(t) = Zg i R R ) N B R~
(n)? (n? =17 (n)? = 2
vor — v 7 7
where V Zl, ]E{({ |]-',.(f)1 } There exists a constant C such that
7 stands for the Prokhorov distance.
d “Rate of convergence in the invariance principle for martingale difference arrays”. In: Lithuanian Mathematical Journal 34.4

(1994), pp. 383-392



Step 0 : Understanding Kubilius

» Handling time

> square-integrable martingale
differences:
, ST ARV S e
k i—1
E|:Z fffﬁ]ﬁE[ 0] + (” ’
k=1 k=1

t
13 R ) )



Step 0 : Understanding Kubilius

» Handling time

> square-integrable martingale
differences:
, ST ARV S e
k i—1
E|:Z fffﬁ]ﬁE[ 0] + (” ’
k=1 k=1

» The Prokhorov distance «, U et V deux
variables a valeurs dans le méme
espace,

m(U,V) < e iff P{U € A} < P{V € A®}+¢

t
13 R ) )



Action Plan

> Zfe") = S(”)(U(h")) for k =1,...m (m the number of jumps)
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Action Plan
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> 20 =2+ Zvegn, P(vrgr = —1) = 1= P(vggr =1) =

) | =] _ 2\ (n)
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Action Plan

> Zfe") = S(”)(U(h”)) for k =1,...m (m the number of jumps)

v

(n)
“
for#’»)‘l = Zén) + 7\;5Uk+‘|7 P(Uk+1 = —1) == IP(’Uk_H = 1) = -k + %,

2+/n
() | £(M] _ 2\ S
E[Z717"] = (1 ,,)Zk

> 0 = 3/E (4% - 0-DAY). o<ksm-t
Prokhorov:

v

v

P(wn € A) =P(wn € A, [|lwn — wlloo < &) +Pwn €A, |[|lwn — wlloo > €)
<P(w € A®%) 4+ P(|lwn — w|loo > €)



Step 1: Some random process converges to a Brownian motion

Theorem , o
Let n and m be two integers satisfying

am<n<dm, witho <X <X\ <n'/*
k
W™ =S 1 <k<m, Wit =o.
i=1
Then, there exists a constant Cy(X;) such that

™ (W("'m),W) < G(A)n~4In (n).



Step 2: Getting closer from the original process

Let's consider Y(mm) = (y(mm)(1), 0 < t < 1):

(n,m
={

R (n) (n) (n,m) (n,m)
T (G a0 ), T <<l
ey — Ly

vty = 20 4
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Step 2: Getting closer from the original process

Let's consider Y(mm) = (y(mm)(1), 0 < t < 1):

(n,m
={

R (n) (n) (n,m) (n,m)
T (G a0 ), T <<l
ey — Ly

vty = 20 4

The integral representation of a Ornstein uhlenbeck process

t
2(t)=Zoe " + = \67'3/2/ e~ 7=w(s)ds, Zo ~ N(0,1).
0

Let's consider

2
Foum (w0, X)(E"™) = x (1 - E) +



Step 2: Getting closer from the original process

Theorem ] ]
Given the previous notations
ymum — Fy o wmm) z0y,

and if ‘% = 1‘ < n="/3, then there exists a constant C such that

(Y™™ vy < cn="*In(n).



Step 3: Finally ....

By controling the distance between tfen’m) and Ué”), we finally have

Theorem ) )
For any k in ]0,1/4], there exists a constant C which only depends on « such that
C

m(zM,2) < e



Did we make any progress ?




Original problem

Characterizing the distribution of

I Profies

EZ" (1) = max (1)
1

p (E‘i’s” > 1)

Cum Profe




Convergence of the longest excursion

Some care is required as the excursion is not obviously a continuous functionnal of the process
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Some care is required as the excursion is not obviously a continuous functionnal of the process
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Convergence of the longest excursion

Some care is required as the excursion is not obviously a continuous functionnal of the process

P (EZ’S” > e) =P( sup inf Sa(u) b >a
0<s<t—I (sSu<s+l

This proves the convergence as the event of interest is expressed through a continuous
functionnal, but does nt control the rate



Convergence of the longest excursion

Let's denote H(w) = supg<s<i_| { inf w(u)}
- = <u<s+l

We hope 7 (H(Z(M), H(Z)) < en, i.e. ¥ closed set A, P(H(Z(M) € A) < P(H(Z) € A°)

P(H(Z™M) > a) = Pz € A), with A = {w, H(w) > a}
P(Z € A*") + en,
P(ZeA)+P(Ze A" NA) +ep,
P(H(Z) > a)+ P (Z € A*" NA) +en.

IN A CIA
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Convergence of the longest excursion

Let's denote H = nf u
(@) =supococi( {_inf_w()},

We hope 7 (H(Z(M), H(Z)) < en, i.e. ¥ closed set A, P(H(Z(M) € A) < P(H(Z) € A°)

P(H(Z™M) > a) = Pz € A), with A = {w, H(w) > a}
P(Z € A*") + en,
P(ZeA)+P(Ze A" NA) +ep,
P(H(Z) > a)+ P (Z € A*" NA) +en.

IN A CIA

{ZeAnNA} = {Fw,H(w) > a, |lw—Z|| < en,HZ) < a} C {a—en < H(Z) < a}

Proposition .
There exists ¢ > 0 and a sequence e decreasing to zero such that

P*(a —en < H(Z) < a) < cen



The smart litle trick

We control Fj(a) — Fy(a — ¢), reasonning by induction and conditioning on Z(kl)
15-

Let's denote Fj(a) = Pyoy=y (Vt <5 — Linficy<iy Z(u) < a),
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Theorem
There exists C and « € [0,1/4], such that
C

n(HEZ™), HED) < —



Conclusion

The bad news

»> We prove the convergence of the pure
jumps Markov Process to an Ornstein
Uhlenbeck Process,

> as well as the convergence of the
longest excursion, with the same rate
of convergence

» with a descent rate

» in only 10 years,

20
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Conclusion

The bad news

The good news
> We prove the convergence of the pure g

jumps Markov Process to an Ornstein > We aim at approximating IP (E
Uhlenbeck Process, by P (Eg,Z > l),

a,5n
*

> 1)

> as well as the convergence of the
longest excursion, with the same rate
of convergence

> butP (Ei’z > 1) is only known for
@ = (0,

»> We have good plan for the 10 years to
come.

» with a descent rate

» in only 10 years,

20



Convergence of the longest excursion

THANK YOU !

See You in 10 years !

21
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Practical evaluation of P(E2 > s) via MC approach

Several alternatives:

1. Sample a discretized version, named Z¢ of Z,
2. Sample the first hitting time o4 according to [Alili+2005] and then discretized Z,
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Practical evaluation of P(E2 > s) via MC approach

Several alternatives:

. Sample a discretized version, named Z% of Z,
. Sample the first hitting time o4 according to [Alili+2005] and then discretized Z,

. Use splitting rare events technics to sample o4 and then use previous discretized Z,

&~ W N

. Use splitting rare events technics to sample o4 and use theoretical work for Importance
sampling approach.



Validity of the approximation via £o%

w0
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Validity of the approximation via £%%°

-0.2
I

-0.4
I

Under regularity conditions, [Azais1990] proves the convergence of the excursion of Z% to the
excursions of Z, when Z is a Gaussian processes.



Validity of the approximation via £%%°

-0.2
I

But poor efficiency



Sample the first hitting time using the density



Sample the first hitting time using the density

Key idea

Ornstein-Uhlenbeck
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Sample the first hitting time using the density

Key idea

Ornstein-Uhlenbeck
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Sample the first hitting time using the density

Key idea

Ormstein-Uhlenbeck

N e A
T

position

Density of o4 starting from x.

— T p— 2
Px, a(r) = IGT/T:' exp (75(02 _2 r) — (a—x) )

2 r
X Eexp (—% / (Beso.a—x.r(u) — a)? du),
0

where Besy q—x,r iS a three dimensional Bessel bridge over [0, r] between 0 and a — x.



Sample the first hitting time using multilevel splitting



Sample the first hitting time using multilevel splitting

[Cerou+2005] presents a particle algorithm for rare events to sample og.

letag <@y <...<ax =0a,P(oqg <t)=P(oq, <t)P(og, < tlog, <t)...P(oa < tlog,_,|t)
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[Cerou+2005] presents a particle algorithm for rare events to sample oq.
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the next level.

Process

Position



Sample the first hitting time using multilevel splitting

[Cerou+2005] presents a particle algorithm for rare events to sample oq.

letar <@y <...<ax=a,P(oq <t)=P(og <t)P(oq, < tlog, <t)...P(oqg < tlog,_,|t)

sampling with fixed success:
G trajectories have to reach
the next level.

Process
0

Position
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Sample the first hitting time using multilevel splitting

[Cerou+2005] presents a particle algorithm for rare events to sample oq.

letar <@y <...<ax=a,P(oq <t)=P(og <t)P(oq, < tlog, <t)...P(oqg < tlog,_,|t)

f

. sampling with fixed success:
YA ‘\.

G trajectories have to reach
the next level.

]
“ I
P pamu
)

Process
0

Position



Sample the first hitting time using multilevel splitting

[Cerou+2005] presents a particle algorithm for rare events to sample oq.

letar <@y <...<ax=a,P(oq <t)=P(og <t)P(oq, < tlog, <t)...P(oqg < tlog,_,|t)

sampling with fixed success:
G trajectories have to reach
the next level.
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