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models. However, the standard growth functions used in this context prescribe monotone increasing

growth and can fail to model unexpected changes in growth rates. We propose to model these

variations using stochastic differential equations (SDEs) that are deduced from the standard de-

terministic growth function by adding random variations to the growth dynamics. A Bayesian

inference of the parameters of these SDE mixed models is developed. In the case when the SDE

has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional

distribution of the diffusion process has no explicit form, we propose to approximate it using the

Euler-Maruyama scheme. Finally, we suggest to validate the SDE approach via criteria based on

the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz

function to model data on chicken growth, the modeling being improved by the SDE approach.
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1. Introduction

Growth curve data consist of repeated measurements of a growth process over time among a

population of individuals. In agronomy, growth data allow differentiating animal or vegetal

phenotypes by characterizing the dynamics of the underlying biological process. In gyne-

cology or pediatrics, height and weight of children are regularly recorded to control their

development. The parametric statistical approach used to analyze these longitudinal data

is mixed model methodology (Huggins and Loesch, 1998). The regression function of this

mixed model is a parametric growth function, such as the Gompertz, logistic, Richards or

Weibull functions (Zimmerman and Núnez-Antón, 2001) which prescribe monotone increas-

ing growth, whatever the parameter values. These models have proved their efficiency in

animal genetics (Hou et al., 2005; Jaffrézic et al., 2006, e.g.) and in pediactrics (Spyrides

et al., 2008, e.g.). However, as pointed out by Davidian and Giltinan (2003), the used function

may not capture the exact process, as responses for some individuals may display some

local fluctuations such as weight decreases or growth slow down. These phenomena are

not due to error measurements but are induced by an underlying biological process that is

still unknown today. In animal genetics, a wrong modeling of these curves could affect the

genetic analysis. In fetal growth, the detection of growth slow down is a crucial indicator

of fetal development problems. This paper aims to model these variations in growth rate

using a stochastic differential equation (SDE) whose solution is the regression term of the

mixed model. More precisely, each growth function is defined as the solution of an ordinary

differential equation (ODE). We suggest to add a random perturbation to the ODE, resulting

in an SDE. Thus, the growth rate varies randomly around the mean dynamics. In this paper,

we propose and study Bayesian estimators for mixed models defined by SDEs.

Parametric estimation by maximum likelihood of SDE with random parameters (without

measurement noise) has been studied by Ditlevsen and De Gaetano (2005). However, es-
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timation of SDE mixed models (including the measurement noise modeling) has received

little attention. Overgaard et al. (2005) and Tornoe et al. (2005) proposed estimators based

on an extended Kalman filter, but the algorithm convergence was not proved. Donnet

and Samson (2008) proposed an EM-based estimator and proved the convergence of their

algorithm. Whereas the Bayesian point of view is widely used on standard growth curves,

Bayesian estimation of SDE mixed models has not been much investigated. Cano et al.

(2006) computed the posterior distribution by approximating the diffusion process by an

Euler scheme. Oravecz et al. (in press) studied the Bayesian estimation of an Ornstein-

Uhlenbeck process with random parameters. In this paper, we propose either to use a

judicious transformation of the SDE to compute the exact conditional distribution of the

diffusion process, or, if it is not possible, to approximate the diffusion by the Euler-Maruyama

scheme. Then we propose a Gibbs algorithm to simulate the exact or the approximate

posterior distributions. In the case of approximation by the Euler scheme, we control the error

induced by this scheme on the posterior distributions. Finally, we adapt the computation of

the posterior predictive distributions to validate the SDE mixed model (Meng, 1994).

Section 2 presents the classical mixed model and the mixed model defined by SDEs.

We discuss the choice of the volatility in the SDEs. In Section 3, we suggest some prior

specifications and posterior computation and present the Euler-Maruyama scheme. Section

4 shows how to validate the SDE mixed model using posterior predictive distributions. In

Section 5, the particular case of the Gompertz function is applied on chicken growth data.

2. Models and notations

2.1 Nonlinear mixed models

Let y = (yi)16i6n = (yij)16i6n,16j6ni
denote the data, where yij is the noisy measurement

of the observed biological process for individual i at time tij, for i = 1, . . . , n, j = 0, . . . , ni.
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In classical mixed models, the process is modeled by a deterministic function, depending on

individual random parameters. Formally, the classical nonlinear mixed model is defined as:

yij = f(φi, tij) + εij, εij ∼i.i.d. N (0, σ2) (1)

φi ∼ N (µ,Ω)

with f being a parametric deterministic function and φ = (φi)16i6n the p-vectors of indi-

vidual parameter vectors. The φi are assumed to be independently and identically normally

distributed with expectation µ and variance Ω. The εij are the residual errors, assumed to

be independently and identically normally distributed with null mean and variance σ2.

For growth curve data, f is classically one of the four most famous parametric functions

modeling growth curves, namely the logistic, the Gompertz, the Richards and the Weibull

functions. Each of them can be written as the solution of an ordinary differential equation

(ODE) describing the evolution of growth rate, which are respectively:

f ′(t) = Cf(t)
[
1− 1

A
f(t)

]
, f(0) = A

1+B
(Logistic) (2)

f ′(t) = BCe−Ctf(t), f(0) = Ae−B (Gompertz) (3)

f ′(t) =
BCDe−Ct

1 +Be−Ct
f(t), f(0) = A

(1+B)D (Richards) (4)

f ′(t) = DCtD−1(A− f(t)), f(0) = A−B (Weibull) (5)

where A,B,C,D are non-negative parameters. A is the upper asymptote, C and D are

growth rate parameters. All four models prescribe monotone increasing curves. More gen-

erally, if φ denotes the parameter vector (either (A,B,C), (A,B,C,D) or a well-chosen

parametrization), f is the solution of the following ODE:

∂f(φ, t)

∂t
= F (f, t, φ), f(φ, 0) = f0(φ) (6)

2.2 Nonlinear mixed models defined by stochastic differential equations

The classical nonlinear mixed model is extended by replacing the regression function by a

stochastic process. We propose to introduce a stochastic term in the ODE (6) to take into



4 Biometrics, – –

account individuals whose growth curve suffers from an unexpected growth rate change.

Growth curve is thus described by a random process, denoted (Zt), solution of the SDE:

dZt = F (Zt, t, φ)dt+ Γ(Zt, φ, γ
2)dWt, Z(t = 0) = Z0(φ) (7)

where Wt is a Brownian motion. Γ(Zt, φ, γ
2) is the volatility function depending on the

unknown parameter γ2. The nonlinear mixed model defined by an SDE is thus:

yij = Ztij (φi) + εij, εij ∼i.i.d. N (0, σ2)

dZt(φi) = F (Zt, t, φi)dt+ Γ(Zt, φ, γ
2)dWt (8)

φi ∼ N (µ,Ω)

In model (8), three fundamentally different noises are distinguished: the inter-subject vari-

ability Ω, the dynamic noise γ2, reflecting the random fluctuations around the corresponding

theoretical dynamic model, and the measurement noise σ2 representing the uncorrelated part

of the residual variability associated with assay or sampling errors.

Many types of volatility functions can be proposed to extend an ODE into an SDE (e.g.

constant, square root or polynomial volatility). This choice depends on several considerations.

If the observed biological process is non-negative, a volatility function ensuring the positivity

of (Zt) will be chosen. If biological reasons imply that a model parameter fluctuates along

the experiment record, the volatility can be derived by adding a random perturbation to

this parameter. If heteroscedastic variances have been used in an ODE modeling approach,

a polynomial volatility can be chosen. Finally, algorithmic and computational constraints

have to be considered: an SDE with explicit solution implies a simpler estimation scheme

leading to good estimation properties (convergence of the algorithm to the true posterior

distribution) whereas an SDE without explicit solution implies additional computational

difficulties (use of an approximation scheme). As an example, we propose to use an affine
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volatility function Γ(Zt, φ, γ
2) = γZt, for the logistic (2), Gompertz (3) and Richards (4)

models: the process (Zt) is then a log-Gaussian process (see Section 5.2 for more details).

3. Bayesian estimation

3.1 Prior specification

The Bayesian approach consists in the evaluation of the posterior distribution of the popu-

lation parameters (µ,Ω), σ2 and the volatility γ2 for the SDE model. The first step is thus

the choice of the prior distributions. Usual diffuse prior distributions can be chosen but the

resulting posterior distributions may not be proper. Therefore, we suggest to use standard

prior distributions proposed, among others, by De la Cruz-Mesia and Marshall (2006) for

expectation or variance parameters in hierarchical models:

µk ∼ N (mprior
k , vpriork ), k = 1, . . . , p

Ω−1 ∼ W (R, p+ 1), 1/σ2 ∼ Γ(αpriorσ , βpriorσ )

(9)

where W and Γ are respectively the Wishart and Gamma disributions. The γ2 parameter

controls the variance of the random perturbation. Many prior distributions can be used such

as uniform, inverse-Gamma or Jeffreys. A sensitivity analysis is performed on the real data

set (Section 5.5). In pratice the specification of hyperparameters mprior
k , vpriork , R, αpriorσ , βpriorσ

may be difficult. We choose the values of hyperparameters to obtain non-informative priors.

3.2 Posterior computation

Since models (1) and (8) are non-linear, posterior distributions are not explicit and iterative

estimation procedures have to be used. For the ODE model (1), Gibbs sampling algorithms

including the sampling of the auxiliary random variables φi under their conditional distribu-

tions have been proposed in the literature (Carlin and Louis, 2000, e.g.). These algorithms do

not present any particular difficulties and are not detailed here. For the SDE model (8), we

propose to use a Gibbs algorithm, including the sampling of the auxiliary random variables
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φi and the vectors Zi of realizations of process (Zt) for each individual at each observation

time. Let Z = (Z1, . . . , Zn) ∈ R(n1+1)+...(nn+1) denote the vector of the n realizations. Hence

the Gibbs sampling algorithm for the SDE model is outlined as follows:

• Step 1: initialize the iteration counter of the chain k = 1 and start with initial values

σ−2(0), γ2(0), µ(0),φ(0),Z(0).

• Step 2: obtain σ−2(k), γ2(k), µ(k),φ(k),Z(k) from σ−2(k−1), γ2(k−1), µ(k−1), φ(k−1), Z(k−1)

through successive generations of

(1) Z(k) ∼ p(Z|φ(k−1), γ−2(k−1), σ−2(k−1),y)

(2) φ(k) ∼ p(φ|σ−2(k−1), γ−2(k−1), µ(k−1),Ω(k−1),Z(k),y0) where y0 = (yi0)i=1...n

(3) µ(k) ∼ p(µ|φ(k)) and Ω(k) ∼ p(Ω|φ(k))

(4) σ−2(k) ∼ p(σ−2|Z(k),φ(k),y) and γ−2(k) ∼ p(γ−2|Z(k),φ(k))

• Step 3: change k to k + 1 and return to Step 2 until convergence is reached.

Some conditional distributions are explicit. A Gamma prior distribution on σ−2 implies that

p(σ−2|Z(k),φ(k),y) is a Gamma density. The prior distribution of p(φ|µ,Ω) being Gaussian,

the conditional distribution of µ is Gaussian and the conditional distribution of Ω is inverse

Wishart. The conditional distributions on φ,Z and γ2 depend on the specific form of the SDE

and are detailed in the particular example of the Gompertz model in Section 5. Depending on

the model complexity, we may have to resort to Metropolis-Hastings algorithms. Moreover,

for SDEs without explicit solution, the conditional distribution on Z has generally no

closed form. In this case, we suggest to approximate the diffusion by the Euler-Maruyama

scheme, which leads to Gaussian approximations of the transition densities. An approximate

statistical model is introduced on which the posterior distributions are computed.
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3.3 Posterior distribution using Euler-Maruyama approximation

The Euler-Maruyama scheme is presented for subject i. If the time intervals between the

observation instants are too great to obtain a good approximation of the transition density,

a natural approach is to introduce a set of auxiliary latent data points between every pair of

observations, as first proposed by Pedersen (1995). Let ti0 = τ0 < . . . < τm < . . . < τMi
= ti,ni

denote the equally spaced discretization of the time interval [ti0, ti,ni
] and h be the step size

of the discretization. We assume that, for all j = 0 . . . ni, there exists an integer mj verifying

tij = τmj
(m0 = 0 by definition). Using the approximated diffusion process from the Euler-

Maruyama scheme of step size h, an approximate statistical model is defined as:

yij = Z̃h
mj

(φi) + εij, εij ∼i.i.d. N (0, σ2) (10)

Z̃h
m(φi) = Z̃h

m−1(φi) + h F (Z̃h
m−1, τm−1, φi) + Γ(Z̃h

m−1, φi, γ
2)
√
h ξm , 1 6 m 6 Mi,

ξm ∼ i.i.dN (0, 1), φi ∼i.i.d N (µ,Ω)

For model (10), the conditional distribution of the approximate diffusion Z̃h is Gaussian,

allowing to implement the previously presented Gibbs algorithm. The convergence of this

Gibbs algorithm is ensured by classical results (Carlin and Louis, 2000). However, this

Gibbs algorithm is performed on the approximate model (10), and computes the posterior

distribution ph(θ|y) of model (10), with θ = (µ,Ω, σ2, γ2), instead of the original posterior

distribution p(θ|y). But, the error induced by the Euler scheme on the posterior distributions

can be controlled, as shown in the Supplementary materials.

4. Model validation

The goal in model checking is to monitor the quality of the proposed model, i.e. to determine

whether the observed data are representative of the type of data we might expect under this

model. Posterior predictive checks set this up by generating replicated data sets from the

estimated posterior predictive distribution. These replicated data sets are then compared
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with the observed data. The function used to compare observed and replicated datasets is

the discrepancy function; it depends on data and model parameters and is denoted T (y, η),

η being used as generic notation for a function of the model parameters. It quantifies

incompatibility of the model with the observed data. In our case, we consider for T the

χ2 discrepancy function, computed for the whole population at each age as:

Tj(y, η) =
∑
i

(yij − ηij)2

V ar(yij − ηij)

For the observation at time tij, we choose ηij = f(φi, tij) for the ODE model and ηij = Zij(φi)

for the SDE model. Consequently, for both models, V ar(yij − ηij) = σ2.

We aim at comparing the posterior distribution p(Tj(y, η)|y) of the observed data y with

the posterior distribution p(Tj(yrep, η)|y) where yrep denotes the replicated data drawn from

the posterior predictive distribution p(yrep|y). A short version of that posterior predictive

distribution is the posterior predictive p-value:

ppp,j = P
[
Tj(yrep, η) > Tj(y, η)|y

]
=
∫
P
[
Tj(yrep, η) > Tj(y, η)|y, η

]
p(η|y)dη (11)

Since this quantity has no closed form, the idea is to approximate it by the Monte Carlo

method. For each estimated model (ODE and SDE), the Gibbs algorithm used to estimate

the posterior distribution provides a set of vectors ηl (l = 1 . . . L) drawn from the posterior

distribution p(η|y). For each of this draw, a replicated data set ylrep is simulated from the

posterior predictive distribution of the data p(yrep, η
l). Finally, the posterior predictive p-

value (11) is estimated by the Monte Carlo method as 1
L

∑L
l=1 1Tj(yl

rep,η
l)>Tj(y,ηl).

5. An example: chicken growth modeling with the Gompertz function

We focus on the modeling of chicken growth. Data y are noisy weight measurements of

n = 50 chickens at weeks t =0, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40 after birth: see the

corresponding curves on Figure 1. Such a data set has been previously analyzed by Mignon-

Grasteau et al. (1999), Jaffrézic et al. (2006) and Meza et al. (2007), who conluded that,
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among the standard growth models, the monotonic mixed Gompertz model is the most

appropriate one. This model is adapted to the most subjects, however it fails to model the

unexpected variations of growth rate for some individuals (see Figure 1).

5.1 The classical Gompertz nonlinear mixed model

Jaffrézic and Foulley (2006) underline that a heteroscedastic error model is required to obtain

satisfactory results. For simplicity’s sake, we consider modeling the logarithm of the data y

by adding an additive measurement error with a constant variance:
log yij = logAi −Bie

−Citij + εij, εij ∼i.i.d. N (0, σ2), ∀i = 1, . . . , n, j = 0, . . . , ni

φi = (logAi, Bi, logCi) ∼i.i.d. N (µ,Ω), ∀i = 1, . . . , n

(12)

We use the log-parametrization for parameters Ai and Ci. This parametrization has two

advantages: it simplifies the computation of the posterior distributions and it ensures the

positivity of the parameters. We set µ = (log(a), b, log(c)).

5.2 Extension to the Gompertz stochastic nonlinear mixed model

We now deduce the SDE model from the Gompertz equation (3). Given the heteroscedasticity

of the process, the volatility function is set to be equal to Γ(Zt, φ, γ
2) = γZt:

dZt = BCe−CtZtdt+ γZtdWt, Z0 = Ae−B (13)

This means that the standard error of the random perturbations of the growth rate is

proportional to weight. This choice of volatility has two main advantages. First, SDE (13)

has an explicit solution. Indeed, set Xt = log(Zt). By the Ito’s formula, for h > 0, the

conditional distribution of Xt+h given (Xs), s 6 t is:

Xt+h|(Xs)s6t ∼ N (Xt −Be−Ct(e−Ch − 1)− 1

2
γ2h, γ2h), X0 = log(A)−B

Thus, ∀t > 0, we have Zt = Ae−Be
−Ct

e−
1
2
γ2t+ηt = f(t)e−

1
2
γ2t+ηt with ηt ∼ N (0, γ2t) and

Z0 = Ae−B. As a consequence, Zt is a multiplicative random perturbation of the solution of
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the Gompertz model. Second, due to the assumption of the non-negativity of A, Zt is almost

surely non-negative, which is a natural constraint to model weight records.

We then discretize the SDE. The discrete realization (Xtij ) of the SDE is Markovian:

Xi,tij |Xi,tij−1
∼ N

(
Xi,tij−1

−Bie
−Citij−1(e−Ci(tij−tij−1) − 1)− 1

2
γ2(tij − tij−1), γ

2(tij − tij−1)
)

with Xi,0 = log(Ai)−Bi. The SDE model (8) on the logarithm of data is thus defined as:

(log yi0, log yi1, . . . , log yini
)′ =

(
log(Ai)−Bi, Xti1 , . . . , Xtini

)′
+ εi, εi ∼i.i.d. N (0, σ2Ini+1)(

Xti1 , . . . , Xtini

)′
=
(
log(Ai)−Bie

−Citi1 , . . . , log(Ai)−Bie
−Citini

)′
− γ2 (ti1, . . . , tini

)′ + ηi

ηi ∼i.i.d N (0J , γ
2Ti) , Ti = (min(tij, tij′))16j,j′6ni

(logAi, Bi, logCi) ∼i.i.d. N (µ,Ω)

(14)

5.3 Posterior computation and inference in the Gompertz model

Conditional distribution computation for the ODE mixed model is standard. We detail

the computation under the SDE mixed model. Let mprior
a ,mprior

b ,mprior
c , vpriora , vpriorb vpriorc

denote the prior parameters of the 3 components of µ. The conditional distribution of

X i = (Xij)16j6ni
given (φi, γ

−2,yi, σ
2) is Gaussian with mean mpost

Xi
and variance V post

Xi
:

V post
Xi

= (σ−2Ini−1 + γ−2T−1
i )−1, mpost

Xi
= V post

Xi

[
σ−2(log yi1 . . . log yini

)′ + γ−2T−1
i uXi

]
with uXi

= logAi−Bi

(
e−Citi1 . . . e−Citini

)′
− 1

2
γ2 (ti1 . . . tini

)′. Let ω2
logA, ω

2
B, ω

2
logC denote the

diagonal elements of Ω. Let Ωk,(j,j′) denote the two-vector composed of the elements on the

k-th row and (j, j′) columns of Ω and Ω(j,j′),(j,j′) the two-symetric-matrix composed of the

elements on the (j, j′)-th rows and (j, j′)-th columns of Ω. Set the (ni + 1)× (ni + 1)-matrix:

Gi =

 σ2 0

0 γ2Ti

 (15)

The conditional distributions for the individual parameters logAi and Bi are N (mpost
Ai

, V post
Ai

)

and N (mpost
Bi

, V post
Bi

), respectively, with:

V post
Ai

=

(1 . . . 1)G−1
i (1 . . . 1)′ +

1

ω2
logA |B,logC

−1
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mpost
Ai

= V post
Ai

(1 . . . 1)G−1
i uAi +

µlogA |B,logC

ω2
logA |B,logC


V post
Bi

=

(e−Citi0 . . . e−Citini )G−1
i (e−Citi0 . . . e−Citini )′ +

1

ω2
B | logA,logC

−1

mpost
Bi

= V post
Bi

(e−Citi0 . . . e−Citini )G−1
i uBi +

µB | logA,logC

ω2
B | logA,logC


where

uAi = (log yi0 Xi1 . . . Xini
)′ +Bi

(
e−Citi0 . . . e−Citini

)′
− 1

2
γ2 (ti0 . . . tini

)′

ω2
logA|B,logC = ω2

logA − ΩlogA,(B,logC)Ω
−1
(B,logC),(B,logC)Ω

′

logA,(B,logC)

µlogA |B,logC = log a+ ΩlogA,(B,logC)Ω
−1
(B,logC),(B,logC) ((Bi, logCi)

′ − (b, log c)′)

uBi = (log yi0, Xi1 . . . Xini
)′ + logAi −

1

2
γ2 (ti0 . . . tini

)

ω2
B| logA,logC = ω2

B − ΩB,(logA,logC)Ω
−1
(logA,logC),(logA,logC)Ω

′

B,(logA,logC)

µB | logA,logC = b+ ΩB,(logA,logC)Ω
−1
(logA,logC),(logA,logC) ((logAi, logCi)

′ − (log a, log c)′)

The conditional distributions of log(a) and b are Gaussian with parameters:

V post
a =

[
nω−2

logA + (vpriora )−1
]−1

and mpost
a = V post

a

[
ω−2

logA

1

n

n∑
i=1

logAi +
mprior
a

vpriora

]

V post
b =

[
nω−2

B + (vpriorb )−1
]−1

and mpost
b = V post

b

[
ω−2
B

1

n

n∑
i=1

Bi +
mprior
b

vpriorb

]

The conditional distribution of Ω−1 is W (R + (φ − µ)(φ − µ)′, n + p + 1) where φ − µ =

[(φ1 − µ) . . . (φn − µ)] ∈ R3×n. The conditional distribution of σ2 is Γ(αpostσ , βpostσ ) with:

αpostσ = αpriorσ +
∑
i=1

n
ni + 1

2
and βpostσ =

 1

βpriorσ

+
1

2

n,ni∑
i=1,j=0

(log yij −Xij)
2

−1

The posterior distributions of logCi, log c and γ2 have no explicit form and we use the

Metropolis-Hastings random-walks.

The Metropolis-Hastings and Gibbs algorithm convergences are ensured by the theorems

proposed by Carlin and Louis (2000) and Mengersen and Tweedie (1996). The implementa-

tions of the ODE and SDE approaches have the same level of complexity. The convergence

and the stability of the MCMC algorithms produced by these two algorithms are equivalent.
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5.4 Simulations

We simulate datasets mimicking chicken growth with n = 50 individuals and ni = 9 measure-

ments obtained every 5 weeks after birth. The population parameters are log(a) = log(3000),

b = 5, log(c) = log(14), Ω is assumed diagonal with diagonal elements equal to 100 and

σ−2 = 5. A 100 datasets are simulated via the mixed model defined by the Gompertz model

(12) and a 100 datasets with the mixed model defined by the Gompertz SDE (14), with

γ2 = 1. We estimate all the parameters under the ODE mixed model (12) and the SDE mixed

model (14), successively. The two algorithms take 96s and 206s on a dataset with a Intel

Core2 Duo CPU (2.4 GHz), respectively. Estimates are obtained as the expectation of the

parameter posterior distribution. Means and standard errors computed for each parameter

on the 100 estimation results obtained with both algorithms are presented in Table 1.

[Table 1 about here.]

When data are simulated under the ODE model, estimates obtained with the Bayesian

ODE algorithm are very satisfactory. Those obtained by the Bayesian SDE algorithm are

also satisfactory although the bias for the variance parameter ω−2
lnA is larger. Note that, as

expected, the estimation of the volatility parameter γ2 is rather low (0.19). When data are

simulated under the SDE model, estimates obtained with the Bayesian SDE model are very

satisfactory, with small bias and standard error. On the contrary, the estimates obtained

with the Bayesian ODE algorithm have larger bias, including the parameters of fixed effects.

The parameter ω−2
logA is very badly estimated (8.63 to be compared to the true value 100).

5.5 Application on chicken growth data

The proposed models are applied on real data of chicken growth. The ODE and SDE models

(12) and (14) are used to model the logarithm of the data. The influence of the ODE model

priors has been validated in Jaffrézic et al. (2006). For the SDE model, the influence of the

prior of γ2 is studied using the Deviance Information Criterion (DIC) (Spiegelhalter et al.
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(2002)). Only differences in DIC are meaningful. A inverse Gamma prior on γ2, a Jeffreys

prior on γ−2, a log normal prior on log(γ), a uniform prior on γ2 have been tested leading

to DIC variations from the uniform prior choice equal to 24, 1.5, 1.4 and 0 respectively. The

influence on the posterior distributions was very light. Results are presented with a uniform

prior on γ2. Posterior expectations of the parameters are presented in Table 2. Diagnostic

tools to validate the models are applied to both ODE and SDE models: Figure 2 presents

the posterior predictive distributions and p-values of both models computed for each time

point. The estimate of γ2 is strictly positive and its credibility interval puts the parameter

of long way from zero (see the posterior distribution of γ2 in the Supplementary Materials).

This means that the dynamical process that most likely represents the growth is a stochastic

process with non-negligible noise. The diagnostic tools also show a clear improvement from

the ODE model to SDE model for the whole population, both at early and late ages. The

reduction in DIC from the ODE to the SDE models is equal to 393, which clearly indicates

the better predictive ability of the SDE model. The predictive abilities of models M1 = ODE

and M2 = SDE can also be compared on the posterior expectation of squared errors using

cross-validation techniques i.e. after dropping information at measurement j (the new data

set is denoted y−j) to make prediction at the corresponding occasion:

rkj =
n∑
i=1

E
[
(log(yrep,ki,j )− log(yi,j))

2|y−j
]
, k = 1, 2

with yrep,ki,j drawn from the predictive distribution yrep,ki,j ∼ p(yrep,ki,j |y−j). Averaging in rkj is

with respect to the posterior uncertainty in the parameters of the model. We performed that

comparison for the last observation j = 12 which is especially critical with respect to the

growth pattern studied here. These quantities are rode12 = 0.56 and rsde12 = 0.48 resulting in a

reduction of the squared errors of prediction of 14% when using SDE vs ODE.

Figure 3 reports, for four subjects, the observed weights, the ODE prediction, the empirical

mean of the last 1000 simulated trajectories of the SDE (14) generated during the Gibbs
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algorithm, their empirical 95 % confidence limits (from the 2.5th percentile to the 97.5th

percentile) and one simulated trajectory. Subjects 4 and 13 are examples of subjects with no

growth slow down. Both ODE and SDE models satisfactorily fit the observations. Subject 14

has a small observed weight decrease. For subject 1, the weight decrease is more important.

For both subjects, the ODE model fails to capture this phenomenon while the SDE model

does. Furthermore, the SDE model provides different estimates for the individual parameters.

For example for subject 1, the individual parameter A1 (adult weight) is estimated at 3.922

kg and 3.484 kg by the ODE and SDE models, respectively.

[Figure 1 about here.]

[Table 2 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

6. Conclusion and discussion

We propose a Bayesian approach to nonlinear mixed models defined by stochastic differential

equations. These models are an alternative to classical nonlinear mixed models whose deter-

ministic regression function is too restrictive to model some unexplained biological processes

such as growth rate changes. On the presented data set, the introduction of this SDE model

leads to a clear validation of the model (Figure 2) which was not the case in the standard

model, justifying the introduction of the new stochastic component. Moreover, the modelling

of these fluctuations has a non-neglectible impact on the estimation of the parameters. This

might have a great influence on the conclusions about genetic specifications.

We consider SDEs defined with a general volatility function. As discussed in Section 2,

the study context can induce a natural choice of this volatility function (non-negativity of

the process, fluctuation of a parameter, heteroscedastic variances,...). This volatility function
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choice has obviously some consequences on the complexity of the Bayesian posterior com-

putation. As detailed in Section 3, a volatility function which induces an explicit solution of

the SDE will imply a very easy implementation of the algorithm. The example detailed in

this work belongs to this case. On the contrary, when the SDE has no explicit distribution,

we propose to use the Euler-Maruyama scheme to approximate the diffusion: the conditional

distribution is then Gaussian, implying an easy Bayesian implementation. We control the

error induced by this Euler approximate scheme on the posterior distribution. In this context,

auxiliary latent points are introduced to obtain a better approximation of the diffusion. The

choice of the discrete grids (τ0, . . . , τMi
) is complex and has been evoked by Pedersen (1995)

and Donnet and Samson (2008). In conclusion, generally speaking, there is no limitations to

the choice of the volatility function of the SDE approach.

Our model differs from mixed models with continuous time autoregressive measurement

errors, as proposed by De la Cruz-Mesia and Marshall (2006) or others. These authors

assume that measurement errors have an auto-regressive structure (Ytij = f(tij, φi)+εtij and

dεt = −aεtdt + σdWt). We assume that the auto-regressive structure observed in residuals

of classical nonlinear mixed models comes from a model failure: the regression function is

too restrictive and rigid to model random variations of the biological process. Therefore,

in our model, it is the regression process that has an auto-regressive structure, while the

observation measurements are assumed to be independent. These two models are different.

De la Cruz-Mesia and Marshall (2006) consider a stationnary CAR process, implying that

the process of the observations has a homoscedastic variance. On the contrary, we do not

assume any stationnarity for the process (Z(t)). Moreover, heteroscedastic error model can

be considered with our approach, depending on the choice of the volatility function.

The proposed model should prove to be useful for other applications in which deterministic

models are too restrictive to take into account different sources of variation that exist in real
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life. For example, Picchini et al. (2006) propose a stochastic differential equation to model

glucose/insulin dynamics, where sources of variability are various (anxiety, rest, etc). The

extension of this work to mixed models using our approach should be of great interest.

An interesting area for future research is the development of model selection tools in this

context. Indeed, the analysis of covariate effects and the comparison between the ODE and

the SDE models require specific selection tools. The method of pseudo-priors proposed by

Carlin and Chib (1995) and developed by others, which is very sensitive to the choice of

priors and pseudo-priors, would be difficult to use in practice. Bayes factors are complex to

compute in these models but could be an interesting alternative. Finally, the extension of this

work to multidimensional SDEs would be of great interest in several biological applications.

7. Supplementary Materials

Web Appendix referenced in Sections 3 and 5.5 are available under the Paper Information

link at the Biometrics website http://www.biometrics.tibs.org.
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Zimmerman, D. and Núnez-Antón, V. (2001). Parametric modelling of growth curve data:

an overview. Test 10, 1–73.



Mixed models defined by stochastic differential equations 19

Received. Revised.

Accepted.



20 Biometrics, – –

0 10 20 30 40

0
10

00
20

00
30

00

time (weeks)

w
ei

gh
t (

g)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
● ● ● ● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

Figure 1. Growth curves of the 50 chickens and mean growth curve in dashed bold line.
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Figure 2. Posterior predictive distributions for the ODE and SDE
models on chicken growth data. Posterior predictive p-values at times
(0, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40) for the ODE (resp. SDE) mixed models
are equal to (0.55, 0.00, 0.86, 0.80, 0.08, 0.48, 0.90, 0.73, 0.02, 0.99, 0.91, 0.46) (resp
(0.49, 0.23, 0.40, 0.45, 0.43, 0.60, 0.64, 0.60, 0.43, 0.57, 0.64, 0.56)).
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Figure 3. Observations (circles), predictions obtained with the ODE mixed model (long
dashed line), mean SDE prediction (smooth solid line), 95% credibility interval obtained
with the SDE mixed model (dotted line) and one SDE realization (solid line), for subjects
1, 4 13 and 14.
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Table 1
Mean estimates and standard errors in brackets obtained from the ODE and the SDE mixed models on 100 datasets

simulated with the ODE or the SDE mixed model.

Simulation model true ODE (γ2 = 0) SDE (γ2 = 1)

Estimation model value ODE SDE ODE SDE

µlnA 8.01 8.00 (0.04) 8.03 (0.06) 7.84 (0.07) 8.02 (0.09)
µB 5.00 4.99 (0.08) 5.02 (0.08) 4.83 (0.09) 5.01 (0.11)
µlnC 2.64 2.64 (0.04) 2.63 (0.04) 2.69 (0.05) 2.63 (0.05)
ω−2
lnA 100.00 122.24 (39.95) 160.84 (27.84) 8.63 (3.08) 113.58 (29.25)
ω−2
B 100.00 106.70 (22.17) 103.16 (23.74) 87.38 (34.72) 103.50 (24.02)

ω−2
lnC 100.00 126.27 (45.69) 131.03 (55.02) 125.31 (47.20) 114.53 (47.69)
γ2 - (-) 0.19 (0.02) - (-) 0.96 (0.25)
σ−2 5.00 5.05 (0.39) 5.35 (0.43) 3.67 (0.26) 5.12 (0.40)
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Table 2
Posterior distributions for the ODE and SDE models on chicken growth data: mean estimated parameters and their

95% credibility intervals (95% CI).

ODE SDE
mean 95% CI mean 95% CI

log a 7.77 [7.70; 7.84] 7.75 [7.67; 7.83 ]
b 4.17 [4.11; 4.23] 4.15 [4.08; 4.22]

log c 2.75 [2.70; 2.81] 2.78 [2.71; 2.84]
Ω−1

log a,log a 117.30 [66.53; 190.90] 93.89 [59.02; 139.10]
Ω−1

log a,b -128.50 [-217.90; -68.32] -88.46 [-143.10; -45.65]
Ω−1

log a,log c -4.57 [-29.53; 16.81] 4.40 [-14.41; 25.06]
Ω−1
b;b 172.10 [94.21; 287.90] 146.10 [85.54; 231.9]

Ω−1
b,log c 22.64 [-4.73; 57.69] 23.86 [-1.73; 59.07]

Ω−1
log c,log c 36.68 [23.04; 54.99] 38.04 [22.52; 61.61]
σ−2 225.5 [197.40; 255.50] 630.22 [463.78; 797.90]
γ2 0.09 [0.07; 0.12]


