
Noname manuscript No.
(will be inserted by the editor)

An empirical Bayes procedure for the selection of Gaussian
graphical models

Sophie Donnet · Jean-Michel Marin

Abstract A new methodology for model deter-
mination in decomposable graphical Gaussian mod-
els (Dawid and Lauritzen, 1993) is developed. The
Bayesian paradigm is used and, for each given
graph, a hyper inverse Wishart prior distribution
on the covariance matrix is considered. This prior
distribution depends on hyper-parameters. It is well-
known that the models’s posterior distribution is
sensitive to the specification of these hyper-parameters
and no completely satisfactory method is regis-
tered. In order to avoid this problem, we suggest
adopting an empirical Bayes strategy, that is a
strategy for which the values of the hyper pa-
rameters are determined using the data. Typically,
the hyper-parameters are fixed to their maximum
likelihood estimations. In order to calculate these
maximum likelihood estimations, we suggest a
Markov chain Monte Carlo version of the Stochas-
tic Approximation EM algorithm. Moreover, we
introduce a new sampling scheme in the space of
graphs that improves the add and delete proposal
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of Armstrong et al. (2009). We illustrate the effi-
ciency of this new scheme on simulated and real
datasets.
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1 Gaussian graphical models in a Bayesian
Context

Statistical applications in genetics, sociology, bi-
ology , etc often lead to complicated interaction
patterns between variables. Graphical models have
proved to be powerful tools to represent the con-
ditional independence structure of a multivariate
distribution : the nodes represent the variables and
the absence of an edge between two vertices in-
dicates some conditional independence between
the associated variables.
Our paper presents a new approach for estimating
the graph structure in Gaussian graphical model.
A very large literature deals with this issue in the
Bayesian paradigm: Dawid and Lauritzen (1993);
Madigan and Raftery (1994); Giudici and Green
(1999); Jones et al. (2005); Armstrong et al. (2009);
Carvalho and Scott (2009). For a frequentist point
of view, one can see Drton and Perlman (2004).
We suggest here an empirical Bayes approach:
the parameter of the prior are estimated from the
data. Parametric empirical Bayes methods have



a long history, with major developments evolv-
ing in the sequence of papers by Efron and Mor-
ris (1971, 1972b,a, 1973a,b, 1976b,a). Empirical
Bayes estimation falls outside the Bayesian paradigm.
However, it has proven to be an effective tech-
nique of constructing estimators that performs well
under both Bayesian and frequentist criteria. The
theory and applications of empirical Bayes meth-
ods are given by Morris (1983).
In this Section, we first recall some results on
Gaussian graphical models, then we justify the
use of the empirical Bayes strategy.

1.1 Background on Gaussian graphical models

Let G = (V,E) be an undirected graph with ver-
tices V = {1, . . . , p} and set of edges
E = {e1, . . . , et}, (∀i = 1, . . . , t, ei ∈ V × V ).
Using the notations of Giudici and Green (1999),
we first recall the definition of a decomposable
graph. A graph or subgraph is said to be com-
plete if each pair of vertices is joined by an edge.
Moreover, a complete subgraph that is not con-
tained within another complete subgraph is called
a clique. Let C = {C1, . . . , Ck} be the set of the
cliques of an undirected graph. An order of the
cliques (C1, . . . , Ck) is said to be perfect if ∀i =
2, . . . , k, ∃h = h(i) ∈ {1, . . . , i − 1} such that
Si = Ci ∩ ∪i−1

j=1Ci ⊆ Ch. S = {S2, . . . , Sk} is
the set of separators associated to the perfect or-
der {C1, . . . , Ck}. An undirected graph admitting
a perfect order is said to be decomposable. Let
Dp denote the set of decomposable graphs with p
vertices. For more details, one can refer to Dawid
and Lauritzen (1993), Lauritzen (1996) (Chapters
2, 3 and 5) or Giudici and Green (1999).

Example 1 The graph drawn in Figure 1 – and
used as benchmark in numerical Section 4.2– is
decomposable. Indeed, the set of cliques C1 =
{1, 2, 3},C2 = {2, 3, 5, 6},C3 = {2, 4, 5},C4 =
{5, 6, 7} and C5 = {6, 7, 8, 9} with associated
separators S2 = {2, 3}, S3 = {2, 5}, S4 = {5, 6}
and S5 = {6, 7} forms a perfect order.

Remark 1 : Note that, with p vertices, the total
number of possible graphs is 2p(p−1)/2, p(p −
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Fig. 1 Example of decomposable graph

1)/2 being the number of possible edges. The to-
tal number of decomposable graphs with p ver-
tices can be calculated for moderate values of p.
For instance, if p = 6, among the 32 768 possible
graphs, 18 154 are decomposable (around 55%);
if p = 8, then 30 888 596 of the 268 435 456 pos-
sible graphs are decomposable (around 12%).

A pair (A,B) of subsets of the vertex set V of
an undirected graph G is said to form a decom-
position of G if (1) V = A ∪ B , (2) A ∩ B is
complete and (3) A ∩ B separates A from B ie
any path from a vertex in A to a vertex in B goes
through A ∩B.

To each vertex v ∈ V , we associate a random
variable yv . For A ⊆ V , yA denotes the collec-
tion of random variables {yv : v ∈ A}. To sim-
plify the notation, we set y = yV . The probabil-
ity distribution of y is said to be Markov with re-
spect to G, if for any decomposition (A,B) of G,
yA is independent of yB given yA∩B . A graphi-
cal model is a family of distributions on y verify-
ing the Markov property with respect to a graph.

A Gaussian graphical model, also called covari-
ance selection model (see Dempster (1972)), is
such that

y|G, ΣG ∼ Np (µ, ΣG) , (1)
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whereNp (µ, ΣG) denotes the p-variate Gaussian
distribution with expectation µ ∈ Rp and p ×
p symmetric definite positive covariance matrix
ΣG . ΣG has to ensure the Markov property with
respect to G; in the Gaussian case, y is Markov
with respect to G = (V,E) if and only if

(i, j) /∈ E ⇐⇒
(
Σ−1
G
)
(i,j)

= 0 ,

where A−1 denotes the inverse of the matrix A.
Σ−1
G is called the concentration matrix.

In the following, we suppose that we observe a
sample Y = (y1, . . . ,yn) from model (1) with
mean parameter µ set to zero. The data are ex-
pressed as a deviation from the sample mean. This
centering strategy is standard in the literature, how-
ever the technique developed here can be easily
extended to the case µ 6= 0p.

The density of Y is a function of multivariate
Gaussian densities on the cliques and separators
of G. More precisely, let C and S denote respec-
tively the sets of the cliques and separators of G
corresponding to a perfect order for G. We have :

f(Y|ΣG ,G) =
n∏
i=1

{∏
C∈C φ|C|

(
yiC |(ΣG)C

)∏
S∈S φ|S|

(
yiS |(ΣG)S

) } ,

(2)

where for every subset of vertices A, |A| denotes
its cardinal and (ΣG)A is the restriction of (ΣG)
to A i.e. {(ΣG)i,j}i∈A,j∈A and yA = (yj)j∈A.
φq (·|∆) is the q-variate Gaussian density with
mean 0q and q × q symmetric definite positive
covariance matrix ∆.

From a Bayesian perspective, we are interested in
the posterior probabilities

π(G|Y) ∝ π(G)
∫
f(Y|ΣG ,G)π(ΣG |G)dΣG ,

(3)

for specific priors π(ΣG |G) and π(G). In the fol-
lowing, we discuss the choice of these prior dis-
tributions.

1.2 Prior distributions specification

Prior and posterior distributions for the covari-
ance matrix

Conditionally on G, we set an Hyper-Inverse Wishart
(HIW) distribution as prior distribution on ΣG :

ΣG |G, δ, Φ ∼ HIWG (δ, Φ)

where δ > 0 is the degree of freedom and Φ is
a p × p symmetric positive definite location ma-
trix. This distribution is the unique hyper-Markov
distribution such that, for every clique C ∈ C,
(ΣG)C ∼ IW (δ, ΦC) with density

π ((ΣG)C |δ, ΦC) = hIWGC (δ, ΦC) [det(ΣG)C ]−
δ+2|C|

2

exp
{
− 1

2 tr
[
(ΣG)−1

C ΦC
]}

(4)

where hIWGC (δ, ΦC) is the normalizing constant:

hIWGC (δ, ΦC) =
det
(
ΦC
2

)(|C|+δ−1)/2

Γ|C|

(
|C|+δ−1

2

) (5)

det(.) and tr(.) are respectively the determinant
and trace and Γv is the multivariate Γ -function
with parameter v:

Γv(a) = πv(v−1)/4
v∏
j=1

Γ [a+ (1− j)/2].

The full joint density is:

π(ΣG |G, δ, φ) =
∏
C∈C π ((ΣG)C |δ, ΦC)∏
S∈S π ((ΣG)S |δ, ΦS)

. (6)

Conditionally on G, the HIW distribution is con-
jugate. The posterior distribution of ΣG is given
by (Giudici, 1996):

ΣG |Y,G, δ, Φ ∼ HIW (δ + n, Φ+ SY) . (7)

where SY =
∑n
i=1 yi tyi, tv denoting the trans-

pose of v.

Moreover for such a prior distribution, the marginal
likelihood for any graph G is a simple function
of the HIW prior and posterior normalizing con-
stants hG(δ, Φ) and hG(δ + n, Φ+ SY) (Giudici,

3



1996):

f(Y|G, δ, Φ) =
hG(δ, Φ)

(2π)−np/2hG(δ + n, Φ+ SY)
.

(8)

where hG(δ, Φ) is the normalizing constant of the
HIW distribution which can be computed explic-
itly in decomposable graphs from the normaliz-
ing constants of the inverse Wishart cliques and
separators densities (4-5-6) :

hG(δ, Φ) =
Q
C∈C h

IW
GC

(δ,ΦC)Q
S∈S h

IW
GS

(δ,ΦS)

Remark 2 Note that Roverato (2002) extends the
Hyper-Inverse Wishart distribution to non- decom-
posable cases. Moreover, a general treatment of
priors for decomposable models is given by Letac
and Massam (2007).

Prior and posterior distributions for the graphs
The prior distribution in the space of decompos-
able graphs has been widely discussed in the lit-
erature. The naive choice is to use the standard
uniform prior distribution:

π(G) ∝ 1 .

One great advantage of this choice is simplifying
the calculus but it can be criticized. Indeed, with
p vertices, the number of possible edges is equal
to m = p(p−1)

2 and, in the case of a uniform prior
over all graphs, the prior number of edges has its
mode around m/2 which is typically too large.
An alternative to this prior is to set a Bernouilli
distribution of parameter r on the inclusion or
not of each edge (Jones et al., 2005; Carvalho and
Scott, 2009)

π(G|r) ∝ rkG (1− r)m−kG (9)

where kG is the number of edges of G. The pa-
rameter r has to be calibrate. If r = 1/2, this
prior resumes to the uniform one.
In the following we consider this prior distribu-
tion and give an empirical estimation of r.

Using (8) and (9), we deduce easily that the den-
sity of the posterior distribution in the space of

decomposable graphs satisfies:

π (G|Y, δ, r, Φ) ∝ hG(δ, Φ)
hG(δ + n, Φ+ SY)

π(G|r)

(10)

This posterior distribution is known to be sensi-
tive to the specification of the hyper-parameters r,
δ and Φ (see Jones et al. (2005); Armstrong et al.
(2009)). To tackle this problem various strategies
have been developed. In the following, we sup-
ply a short review of these methods and offer an
alternative one.

Choice of the hyper-parameters δ, r and Φ

In a fully Bayesian context, as proposed by Giu-
dici and Green (1999), a hierarchical prior mod-
elling can be used. In this approach, δand Φ are
considered as random quantities and a prior dis-
tribution is assigned to those parameters (r is fixed
to 1/2). This strategy does not completely solve
the problem since the prior distributions on δ and
Φ also depend on hyper-parameters which are dif-
ficult to calibrate.
An other strategy consists in fixing the values of
δ, r and Φ as in Jones et al. (2005). In that paper,
r is set to 1

p−1 encouraging sparse graphs. They
choose δ = 3 which is the minimal integer such
that the first moment of the prior distribution on
ΣG exists. Finally, they set Φ = τIp and using the
fact that the mode of the marginal prior for each
variance terms σii is equal to τ/(δ+2), τ is fixed
to δ + 2 if the data set is standardised.
An intermediate strategy is suggested by Arm-
strong et al. (2009). First, they fix the value of δ
to 4 1 assessing that such a value gives a suitably
non-informative prior forΣG . Then, they consider
different possibilities for Φ, all of the form Φ =
τA where the matrix A is fixed. In all cases, for
the hyper-parameter τ , they use a uniform prior
distribution on the interval [0, Γ ] where Γ is very
large. Finally, they also use a hierarchical prior on

1 In fact, they set δ = 5 but they consider that µ is un-
known with uniform prior distribution: this situation cor-
responds to the case δ = 4 when µ = 0p.
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r : r ∼ β(1, 1), which leads to

π(G) ∝
(
m

kG

)−1

by integration.
(
m

kG

)
is the binomial coefficient.

This hierarchical prior of r is also used in Car-
valho and Scott (2009). In that paper, they sug-
gest a HIW g-prior approach with g = 1/n. This
approach consists of fixing δ = 1 andΦ = SY/n.

In our point of view, δ measures the amount of in-
formation in the prior relative to the sample (see
(7)): we suggest setting δ to 1 such that the prior
weight is the same as the weight of one observa-
tion. As pointed out by Jones et al. (2005), for this
particular choice, the first moment of the prior
distribution on ΣG does not exist. In our opinion,
this is not an important issue: we fail to see any
argument in favour of the existence of this first
moment.

The structure of Φ can be discussed and various
forms exist in the literature (see Armstrong et al.
(2009) for instance). In this paper, we standard-
ise the data and use Φ = τIp. This choice leads
to sparse graph: on average each variable has ma-
jor interactions with a relatively small number of
other variables. In that context, τ plays the role of
a shrinkage factor and has to be carefully chosen
on the appropriate scale.

What abour r?

In this paper, we recommend to use an empiri-
cal Bayes strategy and to fix (τ, r) to its maxi-
mum likelihood estimation for which computa-
tion is a challenging issue. To tackle this point, a
Markov Chain Monte Carlo (MCMC) version of
the Stochastic Approximation EM (SAEM) algo-
rithm is used.

The SAEM algorithm is presented in Section 2.
In Section 3, a new Metropolis-Hasting algorithm
is introduced. Then, the proposed methodology is
tested on real and simulated datasets.

2 An empirical Bayes procedure via the
SAEM-MCMC algorithm

In the following, we set θ = (τ, r) ∈ R∗+×]0, 1[.
In order to compute the maximum likelihood es-
timation of θ, we need to optimize in θ the fol-
lowing function

f(Y|θ) ∝
∑
G∈Dp

{
hG(δ, τIp)

hG(n+ δ, τIp + SY)

}
π(G|r)

(11)

If the number of vertices is greater than 10, the
number of decomposable graphs is so huge that
it is not possible to calculate the sum over Dp. In
that case, we consider the use of the Expectation-
Maximization (EM) algorithm developed by Demp-
ster et al. (1977), noting the fact that the data Y =
(y1, . . . ,yn) are issued from the partial observa-
tions of the complete data (Y,G, ΣG). However,
for such a data augmentation scheme, the E-step
of the EM algorithm is not explicit and we have
to resort to a stochastic version of the EM algo-
rithm, like:

1. the S-EM scheme introduced by Celeux and
Diebolt (1992) and Diebolt and Celeux (1993)
where the E-step is replaced by a single sim-
ulation from the distribution of (G, ΣG) given
Y and θ;

2. the MC-EM or the MCMC-EM algorithms where
the E-step is replaced by some Monte Carlo
approximations (McLachlan and Krishnan, 2008);

3. the SAEM algorithm introduced by Delyon
et al. (1999) where the E-step is divided into
a simulation step and a stochastic approxima-
tion step;

4. the SAEM-MCMC algorithm (Kuhn and Lavielle,
2004) which extends the SAEM scheme, the
“exact” simulation step being replaced by a
simulation from an ergodic Markov chain.

The S-EM, MC-EM and SAEM methods require
to simulate a realization from the distribution of
(G, ΣG) given Y and θ. We are not able to pro-
duce a realization exactly distributed from the dis-
tribution of (G, ΣG) given Y and θ. We use the
SAEM-MCMC algorithm which just requires some
realizations from an ergodic Markov chain with
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stationary distribution (G, ΣG)|Y, θ. In a first part,
we recall the EM algorithm principles and present
the SAEM-MCMC scheme. In a second part, we
detail its application to Gaussian graphical mod-
els and prove its convergence.

2.1 The Stochastic Approximation version of the
EM algorithm

The EM algorithm is competitive when the max-
imization of the function

θ → Q(θ|θ′) = EΣG ,G|Y,θ′ {log f(Y, ΣG ,G|θ)}

is easier than the direct maximization of the marginal
likelihood (11). The EM algorithm is a two steps
iterative procedure. More precisely, at the k-th it-
eration, the E-step consists of evaluatingQk(θ) =
Q(θ | θ̂k−1) while the M-step updates θ̂k−1 by max-
imizing Qk(θ).
For complicated models where the E-step is un-
tractable, Delyon et al. (1999) introduce the Stochas-
tic Approximation EM algorithm (SAEM) replac-
ing the E-step by a stochastic approximation of
Qk(θ). At iteration k, the E-step is divided into
a simulation step (S-step) of

(
Σ

(k)
G ,G(k)

)
with

the posterior distribution (ΣG ,G)|Y, θ̂k−1 and a
stochastic approximation step (SA-step):

Qk(θ) = (1− γk)Qk−1(θ)+
γk log f(Y, Σ(k)

G ,G(k)|θ̂k−1)

where (γk)k∈N is a sequence of positive numbers
decreasing to zero. When the joint distribution
of (Y, ΣG ,G) belongs to the exponential family,
the SA-step reduces to the stochastic approxima-
tion on the minimal exhaustive statistics. The M-
step remains the same. One of the benefits of the
SAEM algorithm is the low-level dependence on
the initialization θ0, due to the stochastic approx-
imation of the SA-step.
In Gaussian graphical models, we cannot gener-
ate directly a realization from the conditional dis-
tribution of (ΣG ,G) given Y and θ̂k−1. For such
cases, Kuhn and Lavielle (2004) suggest to re-
place the simulation step by a MCMC scheme
which consists of generatingM realizations from
an ergodic Markov chain with stationary distribu-

tion ΣG ,G|Y, θ̂k−1 and use the last simulation in
the SAEM algorithm. Kuhn and Lavielle (2004)
prove the convergence of the estimates sequence
provided by this SAEM-MCMC algorithm towards
a maximum of the function f(Y|θ) under general
conditions for the exponential family.

2.2 The SAEM-MCMC algorithm on Gaussian
graphical models

In this section, we detail the application of the
SAEM-MCMC algorithm to the Gaussian graph-
ical model introduced in Section 1.2. More pre-
cisely, we give the expression of the complete
log-likelihood and of the minimal sufficient statis-
tics. Lavielle and Lebarbier (2001) applied the
same methodology on a change-point problem.

The complete log-likelihood f(Y,G, ΣG |θ) can
be decomposed into three terms:

log f(Y,G, ΣG |θ) = log f(Y|G, ΣG)
+ log π(ΣG |G, τ) + log π(G|r) (12)

On the right-hand side of equation (12), the first
quantity is independent of θ thus, it will not take
part in its estimation. Using the fact that we only
consider decomposable graphs and the definition
of the Hyper Inverse Wishart distribution, the sec-
ond term of the right-hand side of Equation (12)
can be developed :

log π(ΣG |G, τ) =
∑
C∈C

|C|(|C|+ δ − 1)
2

log(τ)

−logΓ|C|

(
|C|+ δ − 1

2

)
−δ + 2|C|

2
log det(ΣG)C

−
∑
S∈S

[
|S|(|S|+ δ − 1)

2
log(τ)− logΓ|S|

(
|S|+ δ − 1

2

)
−δ + 2|S|

2
log det(ΣG)S

]
− τ

2
tr(Σ−1

G )

Furthermore,

log π(G|r) = kG log
(

r

1− r

)
+m log(1− r)
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As a consequence, there exists Ψ a function of
(Y, ΣG ,G, δ) independent of θ = (τ, r) such that

log f(Y,G, ΣG |τ) = Ψ (Y, ΣG ,G, δ)

+
δ − 1

2
p log(τ) +m log(1− r) +

1
2
×〈∑C∈C |C|2 −

∑
S∈S |S|2

tr(Σ−1
G )

kG

 ,

 log(τ)
−τ

log
(

r
1−r

)
〉

(13)

where 〈·, ·〉 is the scalar product of R3. Finally,
following (13), the complete likelihood function
belongs to the exponential family and the mini-
mal sufficient statistic S = (S1, S2, S3) is such
that:

S1(Y,G, ΣG) =
∑
C∈C
|C|2 −

∑
S∈S
|S|2

S2(Y,G, ΣG) = tr(Σ−1
G )

S3(Y,G, ΣG) = kG .

In an exponential model, the SA-step of the SAEM-
MCMC algorithm reduces to the approximation
of the minimal sufficient statistics. Thus, we can
now write the three steps of the SAEM-MCMC
algorithm: let (γk)k∈N be a sequence of positive
numbers such that

∑
k γk =∞ and

∑
k γ

2
k <∞

Algorithm 1 SAEM-MCMC algorithm

(1) Initialize θ̂(0), s(0)1 , s(0)2 and s(0)3

(2) At iteration k,

• [S-Step] generate G(k), Σ
(k)
G from M iterations

of a MCMC procedure – detailed in Section 3 –
with G, ΣG |Y, θ̂(k−1) as stationnary distribution;
• [SA-Step] update

(
s
(k)
i

)
i=1,2,3

using a stochas-

tic approximation scheme: i = 1, 2, 3

s
(k)
i = s

(k−1)
i +γk

(
Si(Y,G(k), Σ

(k)
G )− s(k−1)

i

)
• [M-Step] maximize the joint log-likelihood (13):

τ̂ (k) =
(δ − 1)p+ s

(k)
1

s
(k)
2

r̂(k) =
s
(k)
3

m

(3) Set k = k + 1 and return to (2) until conver-
gence.

The convergence of the estimates sequence sup-
plied by this SAEM-MCMC algorithm is ensured
by the results of Kuhn and Lavielle (2004). In-
deed, first, the complete likelihood belongs to the
exponential family and the regularity assumptions
required by Kuhn and Lavielle (2004) (assump-
tions M1-M5 and SAEM2) are easily verified.
Secondly, the convergence requires the geomet-
ric (It it true?) ergodicity of the Markov Chain
generated at S-step towards the stationary distri-
bution that is the distribution of G, ΣG |Y, θ̂(k−1).
Finally, the properties of (γk)k∈N allow to apply
the results of Kuhn and Lavielle (2004) and we
conclude that the estimates sequence (θ̂(k))k∈N
converges almost surely towards a (local) maxi-
mum of the function f(Y|θ).

3 A new Metropolis-Hastings sampler

At each iteration k of the SAEM algorithm, a cou-
ple (G, ΣG) has to be generated under the pos-
terior distribution G, ΣG |Y, θ(k−1). As described
in Giudici and Green (1999), Brooks et al. (2003)
and Wong et al. (2003), this simulation can be
achieved using a variable dimension MCMC scheme
like the reversible jump algorithm. In case of an
HIW prior distribution on ΣG , the marginal like-
lihood is available in closed form (8) and, there-
fore, there is no need to resort to a variable di-
mension MCMC scheme.
At iteration k of the SAEM algorithm, the simu-
lation of (G, ΣG)(k) can be achieved through the
following two steps procedure:

• [S1-step] G(k) ∼ π(G|Y, θ(k−1))
• [S2-step] Σ(k)

G ∼ π(ΣG |G(k),Y, θ(k−1))

According to (7), the second step [S2-step] of this
procedure resolves into the simulation of HIW
distributions the principle of which is detailed in
Carvalho et al. (2007).
For the first step [S1-step], we have to resort to an
MCMC algorithm but not of variable dimension
since the chain is generated in the decomposable
graphs space with p vertices.
To sample for the posterior in the space of graphs,
Armstrong et al. (2009) use the fact that the marginal
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likelihood is available in closed form and intro-
duce a Metropolis-Hastings (MH) algorithm. At
iteration t, their add and delete MH proposal con-
sists of picking uniformly at random an edge such
that the current graph with or without this edge
stays decomposable; and deducing the proposed
graph by deleting the generated edge to the cur-
rent graph if it contains this edge or adding the
generated edge otherwise.

We use the following equivalent add and delete
MH sampler (formulation legerement differente)

We introduce the following notations. Let G be
the current graph. G−G is the set of decompos-
able graphs derived from G by removing an edge
andG+

G is the set of decomposable graphs derived
from G by adding an edge.

The algorithm is initialized on G(0) and the fol-
lowing procedure is repeated until the convergence
is reached :

Algorithm 2 Add and Delete MH proposal

At iteration t,

(a) Choose at random (with probability 1/2) to
delete or add an edge to G(t−1).

(a.1) If delete an edge, enumerateG−G(t−1) and gen-
erate Gp according to the uniform distribution
on G−G(t−1)

(a.2) If add an edge, enumerate G+
G(t−1) and gener-

ate Gp according to the uniform distribution
on G+

G(t−1)

(b) Calculate the MH acceptance probability
ρ(G(t−1),Gp) such that π(G|Y, θ) is the in-
variant distribution of the Markov chain.

(c) With probability ρ(G(t−1),Gp), accept Gp and
set G(t) = Gp, otherwise reject Gp and set
G(t) = G(t−1).

The acceptance probability ρ(G(t−1),Gp) is equal
to α(G(t−1),Gp) ∧ 1 where

α(G(t−1),Gp) =
π(Gp|Y, δ, r, Φ)

π(G(t−1)|Y, δ, r, Φ)
q(G(t−1)|Gp)
q(Gp|G(t−1))

with

q(G(t−1)|Gp)
q(Gp|G(t−1))

=


|G+

G(t−1) |

|G−Gp |
if add

|G−
G(t−1) |

|G+
Gp |

if delete

j’ai ajoute la formule precedente pour clarifica-
tion. Peux tu verifier que c juste Note that because
in general |G+

G(t−1) | 6= |G−Gp |, the proposal distri-

bution is not symmetric. The ratio π(Gp|Y,δ,r,Φ)
π(G(t−1)|Y,δ,r,Φ)

is evaluated with formula (10).
The enumerations of G−G(t−1) and G+

G(t−1) are not
obvious and can be time-consuming. To tackle
this point, we apply the results of Giudici and
Green (1999) characterizing the set of moves (add
and delete) which preserve the decomposability
of the graph. These criteria lead to a fast enumer-
ation.

Armstrong et al. (2009) prove that this scheme2 is
more efficient than the variable dimension sam-
pler of Brooks et al. (2003), which is itself an im-
provement of the reversible jump algorithm pro-
posed by Giudici and Green (1999). Their pro-
posal is clearly irreducible and, therefore, the the-
oretical convergence of the produced Markov Chain
towards the stationary distribution π(G|Y, τ) is
ensured, following standard results on MH schemes.

However, in practice, the space of decomposable
graphs is so large that the chain may take quite
some time to reach the invariant distribution. To
improve this point, we introduce a data-driven MH
kernel which uses the informations contained in
the inverse of the empirical covariance matrix.
To justify this choice, recall that,because of the
Gaussian graphical model properties, if the in-
verse empirical covariance between vertices i and
j is near zero, we can presume that there is no
edge between vertices i and j. Then, during the
MH iterations, if the current graph contains an
edge between vertices i and j, it is legitimate to
propose removing this edge. The same type of
reasoning can be done if the absolute value of the
inverse empirical covariance between vertices k

2 In Armstrong et al. (2009), the step on the space of
graphs represents a Gibbs step of an hybrid sampler (as al-
ready explained, they consider a hierarchical model where
that the hyper-parameter τ is a random variable).
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and l is large. Indeed, in that case, and if during
the MH iterations the current graph does not con-
tain an edge between vertices k and l, it is legiti-
mated to propose to add this edge. With this pro-
posal, once the random choice to add or delete
an edge has been done, the proposed graph is not
chosen uniformly within the class of decompos-
able graphs but according to the values of the in-
verse empirical covariances.
Let K denote the inverse empirical covariance
matrix: K = (SY/n)−1. G(t−1) \ (i, j) (respec-
tively G(t−1) ∪ (i, j)) denotes the graph G(t−1)

where the edge (i, j) has been removed (respec-
tively added).
The Data Driven kernel is the following one :

Algorithm 3 Data Driven MH proposal

At iteration t,

(a) Choose at random to delete or add an edge to
G(t−1).

(a.1) If delete an edge, enumerateG−G(t−1) and gen-
erate Gp according to the distribution such that

P
[
Gp = G(t−1) \ (i, j)|G(t−1)

]
∝ 1
|Ki,j |

.

(a.2) If add an edge, enumerate G+
G(t−1) and gener-

ate Gp according to the distribution such that

P
[
Gp = G(t−1) ∪ (i, j)|G(t−1)

]
∝ |Ki,j | .

(b) Calculate the MH acceptance probability
ρ(G(t−1),Gp) such that π(G|Y, τ) is the in-
variant distribution of the Markov chain.

(c) With probability ρ(G(t−1),Gp), accept Gp and
set G(t) = Gp, otherwise reject Gp and set
G(t) = G(t−1).

The algorithm is initialized on G(0) and the proce-
dure is repeated until the convergence is reached.
Finally, in view of some numerical experiments
and in order to keep the good properties in terms
of exploration of the standard MH kernel, we pro-
pose to use in practice a combination of the stan-
dard add and delete MH kernel and the previ-
ously presented data-driven kernel. This point is
detailed in the next section.

4 Numerical experiments

In this part, we illustrate the statistical performances
of our methodology on three different data sets.
The second one is a simulated example which
highlights the convergence properties of the SAEM-
MCMC algorithm. The first and third examples
appeared in Whittaker (1990) and have been widely
used to evaluate the statistical performance of graph-
ical models methodology, one can see for instance
Giudici and Green (1999); Armstrong et al. (2009).
Through these two examples, the importance of
the choice of the hyper-parameters and the ef-
ficiency of the new MCMC sampler are under-
lined.

4.1 The Fret’s heads dataset Whittaker (1990)

Fret’s heads dataset contains head measurements
on the first and the second adult son in a sample
of n = 25 families. The p = 4 variables are the
head length of the first son, the head breadth of
the first son, the head length of the second son and
the head breadth of the second son. 61 graphs are
decomposable among the 64 possibles graphs.
We compare three different prior distributions on
(ΣG ,G).

1. We first consider the prior distribution sug-
gested by Jones et al. (2005) e.g.

δ = 3 and r = 1/(p− 1)
Φ = τIp with τ = δ + 2

2. In a second experiment, we use the prior dis-
tribution proposed in Carvalho and Scott (2009)
i.e

δ = 1 Φ =
Sy

n

Furthermore, r ∼ β(1, 1) resulting into

π(G) ∝
(
m

kG

)−1

3. Finally, we use our prior distribution e.g,

δ = 1 Φ = τIp

and a Bernouilli prior of parameter r on the
edges of G. Using the SAEM algorithm de-

9



scribed previously, we estimate τ and r to

τ̂ = 0.3925, r̂ = 0.6052

On this example, there are only 61 decomposable
graphs and so we are able to compute exactly the
posterior probabilities {p(G|y),G decomposable }
for every prior distribution. At that point, we are
interested in comparing the posterior probabili-
ties of the five most probable decomposable graphs
for the three previously prior distribution. The re-
sults are resumed in Table 1.
Commentaire a completer
Our empirical Bayes procedure leading our choice
is objective because based on the dataset.

4.2 Simulated Datasets

We consider 10 artificial datasets where p = 9.
These datasets are simulated according to model
(1) with the graph of Figure 1. τ , δ and n are set
equal to 3× 10−2, 1 and 100 respectively.
The SAEM-MCMC algorithm has been performed
on the 10 datasets in order to estimate the hyper-
parameter τ . The algorithm is arbitrary initialized
with τ0 = 1 × 10−3. Given τ (0), G is initialized
with a standard backward procedure based on the
posterior probabilities with r = 1/2.
The step of the stochastic approximation scheme
is chosen as recommended by Kuhn and Lavielle
(2005): γk = 1 during the first iterations 1 ≤
k ≤ K1, and γk = (k − K1)−1 during the sub-
sequent iterations. The initial guess τ0 could be
far from a local maximum of the likelihood func-
tion and the first iterations with γk = 1 allow the
sequence of estimates to converge to a neighbor-
hood of a local maximum. Subsequently, smaller
step sizes during K − K1 additional iterations
ensure the almost sure convergence of the algo-
rithm to a local maximum of the likelihood func-
tion. We implemented the SAEM-MCMC algo-
rithm with K1 = 100 and K = 300. At the S-
step of the algorithm, the Markov Chain supplied
by the MCMC algorithm is of length M = 500
during the first 5 iterations of the SAEM scheme
and M = 10 for the remaining iterations.
Figure 2 illustrates the convergence of the param-
eter estimates considering 2 arbitrary chosen datasets.

The estimated sequences are represented as a func-
tion of the iteration number. During the first it-
erations of SAEM, the parameter estimates fluc-
tuate, reflecting the Markov Chain construction.
After 100 iterations, the curves smooth but still
continue to converge towards a neighborhood of
a local maximum of the likelihood function. Con-
vergence is obtained after 300 iterations.
(the true τ is 3× 10−2). The relative bais is equal
to −4.6% and the relative root mean square error
(RMSE) amounts to 32.10%. Note that the same
study has been conducted with a fixed r (uniform
prior on G). In that case, the quality of the bias
on τ is of the same order but with a small RMSE
(about 23.5%)

4.3 The Fowl bones dataset Whittaker (1990)

This dataset concerns bone measurements which
are taken from n = 276 white leghorn fowl. The
6 variables are skull length, skull breadth, humer-
ous (wings), ulna (wings), femur (legs) and tibia
(legs). On such a dataset, the determination of the
best decomposable Gaussian graphical model re-
sults in finding the best graph within 18, 154 de-
composable graphs (55% of the possible graphs).
Using this example, we aim at illustrating the fact
that a careful choice of the transition kernel in the
MCMC algorithm ensures a better exploration of
the support of the posterior distribution. To do
this, we compare the performances of the add and
delete proposal of Armstrong et al. (2009) to those
given by the data-driven one.
In a first step, we use the SAEM-MCMC algo-
rithm to calibrate the value of τ and r. We obtain
τ∗ = 0.674 and r∗ = 0.69.
In a second step, using this fixed value of τ and
r, we generate 2 Markov chains of 110 000 itera-
tions. The first one –denoted (G(t)

1 )t=1...110 000–
is simulated using the standard add and delete
kernel. For the second one –(G(t)

2 )t=1...110 000 –
we use exclusively the add and delete kernel dur-
ing 10000 iterations : this phase of burn-in allows
a large exploration of the decomposable graphs
space. During the last 100000 iterations, we alter-
natively and systematically use the add and delete

10



Prior Most probable posterior graphs and posterior probability p(G|y)

Jones et al. (2005)

1

23

4 1

23

4 1

23

4

0.24076 0.16924 0.11761

Carvalho and Scott
(2009)

1

23

4 1

23

4 1

23

4

0.30512 0.19979 0.10813

τSAEM = 0.3756

1

23

4 1

23

4 1

23

4

0.28613 0.18219 0.1264

Table 1 Fret’s heads dataset : the three most probable posterior graphs using various prior on (ΣG ,G).

and data-driven kernels, aiming at a better local
exploration.

To illustrate the performance of this new kernel,
we compute exactly the posterior probabilities
p(G|Y; τ∗, r∗) for each decomposable graph of
size p = 6. We concentrate our efforts on the
graphs such that p(G|Y; τ∗, r∗) ≤ 0.001 (result-
ing into 107 graphs among the 18154 ones) as-
suming the the other ones are of small interest be-
cause nearly never reached by the Markov chains.

For each graph of interest Gint, we count the num-
ber of times each Markov Chain reached it (af-
ter having removed the burnin period). We finally
obtain an estimation of the posterior probability
by each chain:

π̂1(Gint|Y; τ∗, r∗) =
|{t;G(t)

1 = Gint}|
100 000

π̂2(Gint|Y; τ∗, r∗) =
|{t;G(t)

2 = Gint}|
100 000

These values are compared to the theoretical ones
p(Gint|Y; τ∗, r∗). In Figure 3, we plot the esti-

mated densities of the quantities relative errors

π̂1(Gint|Y; τ∗, r∗)− p(Gint|Y; τ∗, r∗)
p(Gint|Y; τ∗, r∗)

× 100

in solid line, and

π̂2(Gint|Y; τ∗, r∗)− p(Gint|Y; τ∗, r∗)
p(Gint|Y; τ∗, r∗)

× 100

in dashed line.

We note that the density corresponding to the er-
rors involved by the data-driven kernel is more
concentrate around the value 0. The large errors
in the add an delete density are due to the graphs
with small probabilities. Thus, the new kernel ex-
plores more efficiently the posterior distribution.
The fact that the acceptance rate is higher for the
data-driven chain confirms this fact (see Figure
4).
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Fig. 2 Simulated datasets: evolution of the SAEM-MCMC bτ(k) estimations on 4 datasets.

5 Conclusion and discussion
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