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Donnet S, Bartolo R, Fernandes JM, Cunha JP, Prado L,
Merchant H. Monkeys time their pauses of movement and not their
movement-kinematics during a synchronization-continuation rhyth-
mic task. J Neurophysiol 111: 2138–2149, 2014. First published
February 26, 2014; doi:10.1152/jn.00802.2013.—A critical question
in tapping behavior is to understand whether the temporal control is
exerted on the duration and trajectory of the downward-upward hand
movement or on the pause between hand movements. In the present
study, we determined the duration of both the movement execution
and pauses of monkeys performing a synchronization-continuation
task (SCT), using the speed profile of their tapping behavior. We
found a linear increase in the variance of pause-duration as a function
of interval, while the variance of the motor implementation was
relatively constant across intervals. In fact, 96% of the variability of
the duration of a complete tapping cycle (pause � movement) was
due to the variability of the pause duration. In addition, we performed
a Bayesian model selection to determine the effect of interval duration
(450–1,000 ms), serial-order (1–6 produced intervals), task phase
(sensory cued or internally driven), and marker modality (auditory or
visual) on the duration of the movement-pause and tapping move-
ment. The results showed that the most important parameter used to
successfully perform the SCT was the control of the pause duration.
We also found that the kinematics of the tapping movements was
concordant with a stereotyped ballistic control of the hand pressing
the push-button. The present findings support the idea that monkeys
used an explicit timing strategy to perform the SCT, where a dedicated
timing mechanism controlled the duration of the pauses of movement,
while also triggered the execution of fixed movements across each
interval of the rhythmic sequence.

interval timing; time production; Rhesus monkey; movement kine-
matics; model testing

INTERVAL TIMING IN THE SCALE of milliseconds is a substrate for
many complex activities, including the perception and produc-
tion of speech, music, and dance (Diehl et al. 2004; Janata and
Grafton 2003; Merchant et al. 2013a; Phillips-Silver and
Trainor 2007), as well as the estimation of the time that
remains before the occurrence of an important event during
sport performance (Merchant and Georgopoulos 2006; Mer-
chant et al. 2009). The ability to capture and interpret the beats
in a rhythmic pattern allows people to move and dance in time

to music (Merchant and Honing 2014; Phillips-Silver and
Trainor 2007). Music and dance, then, are behaviors that
depend on intricate loops of perception and action, where
temporal processing can be involved during the synchroniza-
tion of movements with sensory information or during the
internal generation of movement sequences (Repp and Su
2013). The synchronization-continuation task (SCT) is a sim-
plified version of these processes that has been a backbone tool
in the timing literature (Repp 2005; Wing 2002). In this task
subjects perform tapping movements that are initially guided
by a sensory metronome of isochronous intervals, and then
they continue tapping without the advantage of a sensory cue.
In this regard, our laboratory has shown that different popula-
tions of neurons in the medial premotor cortex (MPC) of the
primate encode the elapsed and the remaining time for an
action during the performance of the SCT (Merchant et al.
2011). This study suggests that the rhythmic nature of the SCT
may depend on the close interaction between these two cell
populations (Merchant et al. 2011). In addition, MPC cells are
tuned to the duration of produced intervals during this rhythmic
tapping task. In fact, the same population of neurons is able to
simultaneously encode the ordinal structure of a sequence of
rhythmic movements and a wide range of durations in the
range of hundreds of milliseconds (Merchant et al. 2013b).
These findings suggest that MPC uses interval tuning as an
abstract representation of the passage of time, where a cell
population signal works as the notes of a musical score to
represent both the duration of the produced interval and the
rank order of the interval that is executed in the learned SCT
sequence (Merchant et al. 2013b; Perez et al. 2013). However,
since the MPC is a motor area connected with the spinal cord
(Dum and Strick 1996), it is important to determine whether or
not the tapping movements showed differences across the
durations and the sequential order of the tested SCT that could
explain the described tuning responses in motor terms. Fur-
thermore, it is crucial to demonstrate that the monkeys per-
formed a phasic tapping task instead of a continuous cyclic
movement that could change the rules of temporal processing
from an explicit to an implicit timing behavior, as it has been
reported previously in a circle drawing task (Merchant et al.
2008a; Robertson et al. 1992; Zelaznik et al. 2002, 2005). In
the present paper, we determined the effect of interval duration,
serial structure, the sensory-cued or internal-driven nature of
rhythmic movements (synchronization or continuation phase),
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and the stimulus modality used as an interval marker on the
cyclic control of the hand movement during the SCT execution
by trained monkeys. The speed profile of the tapping move-
ments was carried out using semiautomatic video-tracking
algorithms (Fernandes et al. 2011), which allowed the identi-
fication of the beginning and end of each tapping movement, as
well as the duration of the pause of movement in the trial
sequence of the SCT. An initial analysis demonstrated a linear
increase in the variance of pause-duration as a function of
interval, while the variance of the motor implementation is
relatively constant across the produce intervals. These results
indicate that only the pause follows the scalar property of
interval timing (Gibbon et al. 1997) and suggest that monkeys
used a central timing mechanism to quantify the pause-dura-
tions (Zarco et al. 2009). Then we performed a Bayesian model
selection for all possible model combinations that assessed the
effect of our four independent variables (interval duration,
serial-order, task phase, and marker modality) on the duration
of both the pause of movement and the tapping movement. The
results showed that the most important parameter used to
successfully perform the SCT was the control of the pause in
movement duration, with important interactions between the
interval duration and the sequential order on the duration of the
pause of movement. In addition, the results also indicate that
the kinematics of the tapping movements were concordant with
a stereotyped control of the hand pressing the push-button,
which was not importantly affected by the duration of the
produced intervals, the sequential structure of the task, or the
modality of the interval marker. The present findings support
the notion that monkeys used an explicit timing strategy to
perform the SCT, where the timing mechanism controlled the
duration of the pauses of movement and also triggered the
execution of a similar downward-upward hand movement
across each produced interval in the rhythmic sequence.

METHODS

Animals

Two male monkeys (Macaca mulatta 5–7 kg, referred to as M01
and M02) were used. The ages of the monkeys were 9 and 8 yr,
respectively. M01 was right-handed, and M02 was left-handed. All
experimental procedures with the animals were approved by the
National University of Mexico Institutional Animal Care and Use
Committee and conformed to the principles outlined in the Guide for
Care and Use of Laboratory Animals (National Institutes of Health,
publication no. 85–23, revised 1985).

Apparatus

Monkeys were seated in a primate chair in a sound-attenuated room
facing a computer screen. The animals tapped on the same type of
push-button with one hand, whereas their opposite arm was comfort-
ably restrained during the task. The monkeys started each trial in the
tasks by putting their working hand on a horizontal key (with infrared
sensors) that was placed next to the push-button. The stimulus
presentation and the collection of behavioral responses were comput-
er-controlled by a custom-made Visual Basic program (Microsoft
Visual Basic 6.0, 1998). Auditory stimuli were presented through two
equidistant front speakers, and the monitor was at a distance of 57 cm
from the monkeys’ eyes.

SCT

Experimental task. The SCT used in this study has been described
before (Merchant et al. 2011; Zarco et al. 2009). Briefly, the monkeys
were required to push a button each time stimuli with a constant
interstimulus interval were presented, which resulted in a stimulus-
movement cycle (Fig. 1). After four consecutive synchronized move-
ments, the stimuli were eliminated, and the monkeys continued
tapping with the same interval for three additional intervals, producing
six sequential intertap intervals. Liquid reward contingencies changed
as a function of the trial duration, as described elsewhere (Bartolo et
al. 2014; Zarco et al. 2009). Trials were separated by a variable
intertrial interval (2–4 s). Trials with produced intervals below 18% of
absolute error with respect to the target interval were considered
correct. The target intertap intervals, defined by brief auditory (33 ms,
2,000 Hz, 65 dB) or visual (32 ms, 10 � 10 cm2) stimuli were 450,
550, 650, 850, and 1,000 ms, and were presented in random order
within a repetition.

Stimuli. The auditory stimuli were pure tones (33 ms, 2,000 Hz, 65
dB), whereas visual stimuli were 4-cm side red squares presented in
the center of a computer screen for 33 ms. The frame rate of the video
board (60 Hz) was accurately calibrated, and both the visual and
auditory stimuli, although brief, were clearly detectable. The target
intervals were 450, 550, 650, 850, and 1,000 ms and were chosen
pseudorandomly within a repetition.

Timing Task Procedure

The subjects performed the SCT in the visual or auditory interval
marker condition in random order in three daily sessions. In each
session, five repetitions for each interval were collected. Therefore,
for each interval and modality, we collected a total of 450 produced
intervals [5 durations � 6 intervals (3 synchronization � 3 continu-
ation) � 15 repetitions]. Before data collection, the monkeys were
highly trained in the SCT, with a performance above 70% of correct
trials (Zarco et al. 2009).

Video Recording

Video recordings were acquired using a Sony Handycam (DCR-
SR45) digital video recorder. The camera was located to the right of
the monkey, deviated from the monkey-monitor axis to get a better
view of the hand movement (�20° for monkey M01 and �35° for
M02) with an elevation of �40°. The distance between the camera
lens and the tapping button was 90–95 cm. A contrasting visual
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Fig. 1. Synchronization-continuation task (SCT). Monkeys were required to
push a button (r; gray line) each time stimuli with a constant interstimulus
interval (s; black line) were presented, which resulted in a stimulus-movement
cycle. After four consecutive synchronized movements, the stimuli stopped,
and the monkeys continued tapping with a similar interval for three additional
intervals. Hence, six intertap intervals are generated by the monkeys in each
trial. The target intervals, defined by brief auditory or visual stimuli, were 450,
550, 650, 850, and 1,000 ms and were chosen pseudorandomly within a
repetition.
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marker was painted on the wrist using nontoxic water-based white
paint to improve movement tracking. Video was stored using MPEG-
2/ACC compression under NTSC-digital standard, with a frame rate
of 29.9 frames/s.

Extracting the Movement Velocity

The marker on the monkeys’ hand was used to track the change in
position over time during the task performance (Fig. 2A). After the
coordinates of each frame (Fig. 2B) were extracted, a two-dimensional
trajectory of the hand was obtained in the video reference space (see
Fig. 2, C and D). Velocity was estimated based on the tracking
trajectory using the norm of the difference between two consecutive
positions (pixels) in the trajectory. The velocity is expressed in
pixel/frame, as illustrated in Fig. 2E. Based on the joint observation of
both trajectory and the velocity profile, the button press was identified
at the first inflexion on velocity (arrow in Fig. 2E) after hand trajectory
reaches the button (position 3 in Fig. 2E).

Decomposing the Behavior

To study the behavior, we decomposed the speed profiles into trials
and then into movements. In Fig. 3, A–C, we plotted the complete
speed profiles of three particular experiments. For one particular speed
profile (M01, auditory condition), we made a zoom on an arbitrarily
chosen trial (Fig. 3D). The speed profiles were decomposed as
follows. In a first step, we isolated the trials, considering that between
two trials the hand stays immobile during at least 5 s. By examining
each potential trial, we removed the incorrect ones: for some of them,
a quick examination proved that the observed signal was in fact only
the observation of noisy movements of the subject. Once the 25
correct trials had been isolated and associated to their time duration,
we decomposed the speed profile of each trial into pauses and
movements in the following way.

The first movement of every trial had a particular speed profile,
with a significantly high peak (higher than any other peak): indeed, for
this first tap, the monkey had to move his hand from the horizontal key
to the push-button. The first tap occurred at some point of this first
peak. The first movement was followed by a pause, corresponding to

the monkey waiting for the second tap, until he started moving his
hand again, for the next movement. In an ideal trial, we would count
six pauses and seven movements. The last movement corresponded to
the return of the monkey’s hand to its original position and so was not
taken into account. If the signal contained a speed peak before the first
high peak identified as the beginning of the experiment, this move-
ment would be removed from the study, since it corresponded to a
noisy observation (see the arrow in Fig. 3D for an example).

For one particular experiment, we were not able recover the
sequence of the target intervals. As a consequence, this experiment
was removed from the study. For 2.2% of the remaining trials, we
were not able to identify the seven movements described below, and
such trials were removed from the dataset.

Statistical Analysis of Behavioral Data

In the analysis of behavioral data, three factors are susceptible to
have a nonnegligible effect, namely the duration of the time interval,
the type of modality (visual or auditory) and the serial order of the
movement in the trial sequence (the first three being referred as
“synchronization”, whereas the three following ones are referred as
“continuation”). To test the relevance of these three effects on the
movement and the pause, we propose to use a Bayesian model
selection procedure.

The work is organized as follows. A preliminary statistical analysis
is performed before a finer statistical analysis. For this second anal-
ysis, we first introduce useful notations and present the various
statistical models we consider. Then the concept of Bayesian model
selection is quickly introduced, and, finally, the results of the model
selection procedure are presented and commented. Note that the
Bayesian model selection and the calculus are detailed in APPENDIX B.

An Initial Descriptive Analysis of the Data

Let (pi)i�1...n and (mi)i�1...n denote, respectively, the collection of
all the pause and movement durations for all the trials and for both
monkeys. The main objective of our statistical study is to understand
the variability of the pause and movement durations. A first indication
of this variability can be given by the following analysis. Considering
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Fig. 2. Tracking the monkey’s hand motion. The hand marker (circle; A) was identified frame by frame (B). The trajectory (C) and marker position (D) were
extracted in coordinates relative to position 1. E: the velocity was calculated using the displacement in pixel in consecutive frame. The button-pressing event
was identified in velocity profile as being the inflexion after peak in position 3, shown as an arrow in the graph.
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that a complete cycle (response to a given stimulus) is composed of a
movement (mi) and a pause (pi), we decompose the variability of the
duration of a complete cycle (pi � mi) using the following formulae:

Var�p � m� � Var�p� � Var�m� � 2Cov�m, p�

In our case, we obtain the following values (computed on the entire
dataset):

Var�p � m� � 0.0395, Var�p� � 0.0381, Var�m� � 0.0032,
Cov�m, p� � �0.0009

meaning that roughly 96% of the variability of the duration of a
complete cycle (p � m) is due to the variability of the pause duration,
the remaining being explained by a small variability of the movement
(8% of the total variability) and a small negative covariation (�2.2%)
between the pause and movement durations.

If we want to understand the reasons for this variability, we can (in
a preliminary study) plot the probability distributions of the pause and
movement durations (for all the available data), with respect to the
imposed time interval. These distributions are plotted in Fig. 4. The
distribution of the durations for all the time durations is in black (plain
line), the other curves are for each type of time duration. Note that the
probability distributions are obtained by kernel density estimation,
which is an adapted version of histograms for continuous data (see
Silverman 1986). We clearly see that the probability distributions of
the movement durations are constant when the time duration varies,
which is not the case for the pause durations. This is corroborated by
Fig. 4C, which shows a linear increase of the pause variability as a
function of the squared time interval (slope of the linear regression
equal to 1.23 10�8), while the variance of the motor implementation
is smaller and relatively constant across intervals (slope of the linear
regression equal to 4.52 10�10). The linear correlation coefficients
also support this remark {Cor[p, (ts)2] � 0.77 and Cor[m,(ts)2] �
0.49}.

In the next section, we propose a finer analysis of these phenomena,
taking into account other factors, such as the modality (auditory or
visual) and the serial order of the movement in the trial.

Complete Analysis of the Variability of the Pause and Movement
Durations

Let us consider the data for one subject, submitted to three visual
and three auditory experiments. Each experiment is composed of 25
trials, 1 trial corresponding to one of the 5 durations; thus each
duration is repeated 5 times pseudorandomly in an experiment. Each
trial corresponds to seven taps (4 in the synchronization phase and
subsequently 3 in the continuation phase).

Let k denote the type of modality: k � 1 (respectively 2) corre-
sponding to the auditory or visual modality. Let i � {1,...,Nk} denote
the index of the trial, each trial corresponding to a duration ts. We
denote by j the serial order of the movement in the trial, j � {1,...,6}.
j � {1,...,3} corresponds to the synchronization phase, whereas j �
{4,...,6} corresponds to the continuation phase. Let pijk (respectively
mijk) be the j-th pause (respectively movement) duration for trial i and
modality k. pijk and mijk will be studied using the same statistical linear
model. Thus we present the model using a generic notation yijk.

To study the effects of the modality, the time duration and the serial
order of tap in the trial, we consider the following heteroscedastic
general linear model (model M9), combining quantitative (interval
time ts) and qualitative factors (modality and serial order), which is
written as:

yijk � � � � j
1 � �k

2 � � jk
12 � �� � � j

1 � �k
2 � � jk

12�tijk
s � tijk

s �ijk (M9)

�ijk � i.i.d N�0, �2�
This model allows the combination of a linear regression (against the
interval time) and an analysis of the effects of qualitative factors. In
model M9, � is the fixed effect, �j

1 and �j
1 model the effect of the serial

order, �k
2 and �k

2 the effect of the modality, and �jk
1 and �jk

12 their
interaction.

Remark 1. The superiority of the heteroscedastic model (variance
of the noise observation depending on tijk

s ) over the homoscedastic one
(constant noise variance) is widely supported by the literature. Indeed,
it has been broadly demonstrated that the standard deviation increases
linearly as a function of the interval, which is called the scalar
property of interval timing (Gibbon et al. 1997; Ivry and Hazeltine
1995; Merchant et al. 2008b; see also Fig. 4C). That is why this
structure of noise variance is adopted here.

In a standard factor analysis, each effect is removed one by one,
and this new model is compared with the complete one (model M9)
using standard hypothesis testing. In this paper, we propose a more
complete study, considering all the possible models (including any
possible combination of the factors) and comparing globally using a
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Fig. 3. Plot of three speed profiles with 25 correct trials collected during a
video recording session. A: monkey 01, auditory condition. B: monkey 02,
auditory condition. C: monkey 01, visual condition. D: zoom on one particular
trial (delimitated by the two bold dashed lines in C). Dashed lines: tap instants.
Arrows above the interval number: intertap durations (the first three corre-
sponds to the synchronization phase, the three following ones are in the
continuation phase). First horizontal arrows below the speed profiles: move-
ment durations. Second horizontal arrows below the speed profiles: pause
durations. Large vertical arrow: sporeous movement.
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model selection procedure. We now present the collection of models
and discuss the model selection procedure.

Collection of models. Model M9 is the most complete model we can
suggest, including all the listed factors. In Table 1, we summarize the
collection of submodels of model M9, including or not the factors of
interest, considering any possible combination of the factors. Since it
would be fastidious to present the complete collection of models (16
in total), we give the following two examples and postpone the
complete list to the APPENDIX A.

The simplest model is the one including no effects:

yijk � � � tijk
s �ijk, �ijk � i.i.d N�0, �2� (M0)

To consider a conjoint effect of the time interval and of the modality,
we define:

yijk � � � �k
2 � �� � �k

2�tijk
s � tijk

s �ijk, �ijk � i.i.d N�0, �2� (M3)

Besides, we are also interested in the effect of synchronization/
continuation (j � 1, 2, 3 or j � 4, 5, 6) over the movement/pause. In
this case, there is no sense in introducing a third variable, because this
one would be included in the variable “serial order of the tap.” So we
resort to defining new submodels of the ones previously described.
More precisely, for each model, including the variable “serial order of
the tap” (e.g., models M4 to M9 in Table 1), we propose a new
corresponding submodel such that:

�1
1 � �2

1 � �3
1 �4

1 � �5
1 � �6

1

�1
1 � �2

1 � �3
1 �4

1 � �5
1 � �6

1

leading to six more models, which are also listed in Table 1. Table 1
also specifies the number of parameters involved in each model.

Bayesian model selection for the heteroscedastic linear model.
Model selection is a key issue in statistical inference. Assume that you
have a set of data y and a collection of models M1,...,MM in compe-
tition, each model being defined by a likelihood lm(y|	m), depending
on an unknown parameter 	m of dimension dm. We aim at defining a
quantitative criteria to choose the model (among the given collection),
which is the “most adapted” to the data y. In the Bayesian version of
model selection, a prior probability is set on each model pm(Mm), and
the models are compared through their posterior probability:

pm(Mm|y) �
p�y|Mm�pm�Mm�

p�y�
where p(y|Mm) is the marginal likelihood, equal to p(y|Mm) �

�
	m

lm(y|	m)
m(	m)d	m, with 
m(	m) being the prior distribution of the

parameters 	m of model Mm. In the case of our heteroscedastic linear
model, the posterior probability of each model can be computed in a
closed form, provided a judicious choice of the prior distributions on
the parameters. The details of the procedure are given in APPENDIX B.
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Fig. 4. Distribution of the movement (A) and
pause (B) durations. Solid line (black): distri-
bution for all the time durations. Dashed line
(red): for durations equal to 434 ms. Dotted
line (green): for durations equal to 534 ms.
Dotted-dashed line (blue): for durations equal
to 634 ms. Long dash line (cyan): for durations
equal to 834 ms. Two dashed line (magenta):
for durations equal to 984 ms. C: variance of
the pause durations (dots) and the movement
durations (squares) as functions of the time
squared time interval (ts)2 with linear regres-
sions: the slope of the regression line for the
pause variance is equal to 1.23 � 10�8,
whereas the slope of the regression line for the
movement variance is equal to 4.52 � 10�10.
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RESULTS

Model Selection Procedure

We present in Tables 2–5, the results we obtained on the
model selection for the two monkeys (considered individually
or together), for the pause and the movement. For each monkey
and each type of data (movement or pause), we give the list of
the models ordered by decreasing log10 marginal likelihood.
Note that this is equivalent to ordering them through their
posterior probabilities, since we set uniform prior probabilities
on the models. In the last columns of Tables 2–5, we compute
the Bayes Factor (in log10 scale) for each consecutive pair of
ordered models M(m) and M(m�1):

log10 Bm,m�1 � log10

p�M�m��y�
p�M�m�1��y�

� log10 p�y�M�m��
� log10 p�y�M�m�1�� (1)

Since the models have been ordered, these quantities are
negative. The log10Bm;m�1 can be interpreted with the Jeffrey
scale of evidence, setting that if |log10Bm,m�1| � 0.5, the
evidence for model M(m) is weak; if 0.5 � |log10Bm,m�1| � 1,
the evidence is substantial; if 1 � |log10Bm,m�1| � 2, the
evidence is strong; and if 2 � |log10Bm,m�1| the evidence is
decisive.

Statistical Interpretation

On the pause. Table 2 gives the results of the model
selection procedure for the pause duration for monkeys M01
and M02, separately, whereas Table 3 gives the model selec-
tion results using the data of monkeys M01 and M02 con-
jointly, but without introducing an additional effect of the
monkey.

First of all, note that, from all tables, it is clear that the
models involving an effect of the time duration (models with
an odd index) are better than the ones which do not take that

effect into account (models with an even index). In Table 3, the
first ranked model ignoring the time duration effect (M0)
arrives after all the other models, including that effect and with
a large Bayes Factor (�191.99 in favor of model M9). The
models including the time duration effects can be divided into
two groups, namely, models {M1, M11, M3, M13, M15} and
{M5, M7, M9}, the two groups being separated by a large gap
in the Bayes factor (�15 in Table 3). The models of the first
group takes into account the effect of synchronization-contin-
uation, whereas the other group includes the effect of the serial
order of the tap. The model selection procedure clearly pleads
in favor of a simpler model.

In Fig. 5, we plot the regression lines obtained for the two
models of interest, namely model M1, which only includes the
effect of the time duration and is the best with respect to the
Bayesian model selection procedure, and model M15 (which is

Table 1. Collection of tested models

Model
Time

Interval
Serial
Order

Synchronization/
Continuation Modality

Interaction
of 1 and 2

No. of
Parameters

M0 2
M1 X 3
M2 X 3
M3 X X 5
M4 X 7
M5 X X 13
M6 X X 8
M7 X X X 15
M8 X X X 13
M9 X X X X 25
M10 X 3
M11 X X 5
M12 X X 4
M13 X X X 7
M14 X X X 5
M15 X X X X 9

Column 1, model index. The following columns show the absence or
presence (X) of the various factors: column 2, time duration; column 3, serial
order of the movement in the trial sequence; column 4, synchronization or
continuation; column 5, modality (visual or auditory); column 6, interaction of
the serial order or synchronization/continuation with the modality; column 7,
corresponding number of parameters of the model.

Table 2. Results of the Bayesian model selection for the pause

Monkey M01 Monkey M02

Rank Model
log10 Marginal

Likelihood BF Model
log10 Marginal

Likelihood BF

1 15 2437.23 1 2620.68
2 1 2431.49 �5.74 3 2616.73 �3.94
3 11 2431.15 �0.34 11 2616.68 �0.05
4 3 2428.71 �2.43 13 2612.74 �3.94
5 13 2428.44 �0.28 15 2609.01 �3.73
6 5 2426.78 �1.66 5 2601.89 �7.12
7 7 2424.31 �2.47 7 2597.99 �3.91
8 9 2418.94 �5.37 9 2574.95 �23.04
9 0 2168.56 �250.38 0 2549.67 �25.28

10 2 2166.76 �1.81 10 2547.67 �1.99
11 10 2166.58 �0.18 2 2547.34 �0.34
12 12 2164.77 �1.81 12 2545.34 �1.99
13 14 2164.67 �0.1 14 2543.49 �1.85
14 4 2158.54 �6.13 4 2541.06 �2.43
15 6 2156.75 �1.8 6 2538.74 �2.33
16 8 2147.25 �9.5 8 2527.24 �11.49

Monkey M01 is shown on the left, and monkey M02 on the right. Columns 2
and 5, indexes of the ordered models. Columns 3 and 6, evaluated marginal
likelihood (in log10). Columns 4 and 7: Bayes factors (BF) log10 Bm,m�1 (Eq. 1).

Table 3. Results of the Bayesian model selection for the pause,
for monkeys M01 and M02 simultaneously

Monkeys M01 and M02

Rank Model log10 Marginal Likelihood BF

1 1 4942.78
2 11 4940.67 �2.11
3 3 4939.86 �0.81
4 13 4937.76 �2.1
5 15 4937.76 0
6 5 4922.75 �15
7 7 4919.86 �2.89
8 9 4900.92 �18.94
9 0 4708.93 �191.99

10 10 4707.41 �1.52
11 2 4706.7 �9.71
12 12 4705.18 �1.52
13 14 4705.17 �0.01
14 4 4697.97 �7.2
15 6 4695.74 �2.23
16 8 4686.14 �9.6

Column 2, indexes of the ordered models. Column 3, evaluated marginal
likelihood (in log10). Column 4, BF log10 Bm,m�1 (Eq. 1).
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the most complete of the first group of models). The regression
lines are given for monkeys M01 and M02 separately. In model
M15, the observed pauses are divided into four groups (group
1: auditory task of synchronization; group 2: auditory task of
continuation; group 3: visual task of synchronization; group 4:
visual task of continuation). A linear regression function is
computed for each group of observation. These results support
two important notions: first, that both monkeys controlled the
pause-duration to correctly perform the SCT; and second, the
pause-duration had an interaction with serial order.

On the movement. The results of the model selection proce-
dure for the movement duration are given in Table 4 for
monkeys M01 and M02, separately, and Table 5 for monkeys
M01 and M02 conjointly. Contrary to the pause data, the four
better models (obtained on monkeys M01 and M02 conjointly)
in this case do not involve the effect of time duration. The
phenomenon is quite similar when we study the monkeys
individually. Moreover, we cannot highlight groups of models

and so identify important variables, which could have a major
effect in general on the duration of the movement.

DISCUSSION

This study demonstrates that monkeys used an explicit
timing mechanism to control the duration of their tapping
pauses to execute properly the SCT. Our results also indicate
that monkeys used a stereotyped motor command to perform
the button-press movement. Furthermore, we used a model
selection approach using Bayesian inference that shows the
most important factor that explained the duration of the tapping
pauses in the interval duration of the SCT, with the interaction
between interval duration and the serial-order or task phase
playing also some role.

The results on the analysis of the probability distributions
confirmed the presence of the scalar property of interval timing
in the temporal variability of the pause, but not the movement,
duration in monkeys performing the SCT. In fact, 96% of the
variability of the duration of a complete cycle (pause �
movement) was due to the variability of the pause duration,
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Fig. 5. Regression for monkeys M01 (left) and
M02 (right) using models M1 (plain black
line) and M15 (colored lines). For model M15,
including the effects of synchronization-dura-
tion and the modality, the four regression lines
are plotted, corresponding to the four groups
of observation.

Table 4. Results of the Bayesian model selection for the
movement

Monkey M01 Monkey M02

Rank Model
log10 Marginal

Likelihood BF Model
log10 Marginal

Likelihood BF

1 4 2605.62 12 3060.48
2 6 2603.12 �2.5 14 3058.09 �2.39
3 11 2602.96 �0.16 2 3055.38 �2.71
4 0 2600.75 �2.21 6 3055.37 �0.01
5 10 2600.67 �0.08 13 3053.85 �1.52
6 8 2600.22 �0.45 3 3051.12 �2.74
7 5 2599.82 �0.4 15 3048.98 �2.14
8 1 2599.22 �0.61 8 3045.56 �3.41
9 2 2598.26 �0.96 7 3039.72 �5.84

10 12 2598.17 �0.08 10 3035.69 �4.03
11 13 2597.97 �0.21 0 3031.6 �4.1
12 14 2597.93 �0.04 11 3030.94 �0.66
13 15 2595.66 �2.27 4 3029.92 �1.01
14 7 2594.83 �0.084 1 3029.24 �0.69
15 3 2594.22 �0.061 9 3017.93 �11.3
16 9 2580.98 �13.24 5 3016 �1.94

Monkey M01 is shown on the left, and monkey M02 on the right. Columns
2 and 5, indexes of the ordered models. Columns 3 and 6, evaluated marginal
likelihood (in log10). Columns 4 and 7, BF log10 Bm,m�1 (Eq. 1).

Table 5. Results of the Bayesian model selection for the
movement duration, for monkeys M01 and M02 simultaneously

Rank Model
Monkeys M01 and M02
log

10
Marginal Likelihood BF

1 12 5466.35 0
2 14 5464.79 �1.56
3 10 5464.67 �0.12
4 2 5463.36 �1.31
5 11 5462.13 �1.23
6 0 5461.74 �0.38
7 13 5461.42 �0.32
8 1 5459.75 �1.67
9 3 5458.95 �0.8

10 15 5457.41 �1.54
11 6 5457.39 �0.02
12 4 5455.7 �1.69
13 8 5449.47 �6.23
14 5 5443.33 �6.14
15 7 5442.64 �0.69
16 9 5422.48 �20.15

Column 2, indexes of the ordered models. Column 3, evaluated marginal
likelihood (in log10). Column 4, BF log10 Bm,m�1 (Eq. 1).
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with the remaining being explained by a small variability of the
movement (8% of the total variability) and a small negative
covariation (�2%) between the pause and movement dura-
tions. This analysis was inspired by the classical Wing and
Kristofferson model (1973) that assumed that the total vari-
ability in the SCT can be decomposed in the variability
associated with a central timer and the variability of the motor
implementation. Their model predicted a strict dependence
between adjacent intervals, with a lag-one autocovariance that
is equal to the negative variance of the motor implementation
(Wing and Kristofferson 1973). Using this model, it is possible
to compute indirectly the variance associated with the central
timer, by calculating the total variance and the variance asso-
ciated with the motor implementation that depends on the
lag-one autocovariance. Thus many authors have demonstrated
a linear increase in the variance of the central timer as a
function of interval, while the variance of the motor imple-
mentation is constant across the produce intervals (Balasubra-
maniam et al. 2004; Ivry and Keele 1989; Wing 1980; see
Wing 2002 for a review). In line with these observations, a
recent study showed that transcranial magnetic stimulation in
the motor cortex applied synchronously with the sensory met-
ronome induced complex finger trajectories, but did not had an
effect on the temporal performance on human subjects per-
forming a synchronization tapping task (Levit-Binnun et al.
2007). Due to the kinematic analysis of the velocity of the
tapping behavior, in the present paper we were able to directly
quantify the duration of the pause and the motor execution, and
our results demonstrate for the first time that only the pause
follows the scalar property of interval timing (Gibbon et al.
1997). Consequently, our findings not only indicate that mon-
keys time their tapping behavior controlling the pause-duration by
a timing mechanism, but also imply a direct validation of the
Wing and Kristofferson model (1973), demonstrating that the total
tapping variance of the SCT can be decomposed on the timing and
motor variability, using the speed profile of the subject to directly
quantify these measures (see Fig. 4).

In previous papers, our laboratory has demonstrated that
Rhesus monkeys (Macaca mulatta) show some but not all of
the behavioral traits that define rhythmic entrainment (Mer-
chant et al. 2011; Merchant and Honing 2014; Zarco et al.
2009). Rhythmic entrainment refers to the ability to align
motor actions with an auditory beat or pulse that marks equally
spaced points in music or a sequence of auditory stimuli (Large
and Palmer 2002; Merchant and Honing 2014), and for long
has been considered a complex skill exclusive of humans and
a selected group of bird species that show vocal learning
(Honing et al. 2012; Patel 2006; Patel et al. 2009). Neverthe-
less, Rhesus monkeys show appropriate tempo matching dur-
ing the SCT, with movement periods that slightly underesti-
mated the sensory metronome periods (50 ms) for a range of
intervals from 450 to 1,000 ms (Zarco et al. 2009). The present
findings support these observations by the formal demonstra-
tion that monkeys have the ability to precisely time the dura-
tion of their movement pauses during the SCT. Furthermore,
the pause-duration is by far the most important factor (com-
pared with the serial order, the interval marker modality and
the task phase) in the Bayesian model selection, and this
behavioral parameter follows the scalar property of interval
timing, a property that has been widely described in many
timing tasks (Gibbon et al. 1997; Merchant et al. 2008b, 2008c,

2013a). On the other side, the monkeys’ asynchronies (the time
between the stimulus and the button press) are smaller during
the SCT than their reaction times to stimuli with a random
interonset interval (600–1,400 ms), indicating that these ani-
mals showed a predictive rhythmic behavior during the SCT
(Zarco et al. 2009). The asynchronies in monkeys, however,
are always lagging after the onset times of the metronome for
250 ms, which contrast with the negative mean asynchrony that
is commonly found in humans (Repp 2005). Taken together,
these observations indicate that, although Rhesus monkeys do
not show the phase matching of humans, they show the
remarkable ability to time their tapping pauses during a rhyth-
mic behavior that is initially cued by a sensory metronome and
then is internally driven.

The study of the movement trajectories during the SCT in
humans has revealed two important properties: there is an
asymmetry in the out and return phases of the movement
trajectories (subjects made more rapid movements of shorter
duration toward the temporal target and slower movements in
the return phase), and the timed trajectories are less smooth and
the spontaneous tapping movements, showing higher means
squared jerk (Balasubramaniam et al. 2004). In addition, Dou-
mas and Wing (2007) found that, although the movement
trajectories changed as a function of interval during a SCT, the
performance variability was largely attributable to the timing
process rather than the motor process. In the present paper, we
did not characterize the asymmetries in movement trajectories
in monkeys; instead, we focused on the duration of the move-
ment and the pauses using the speed profile of the trajectories
to define these durations, and we found the timing control was
largely exerted in the pause. Accordingly, it has been shown in
humans performing an SCT tapping task that the holding
period (pause or dwell) between flexion and extension in-
creased as a function of the interval duration (Doumas and
Wing 2007). However, that study did not perform a quantita-
tive characterization of the pause of movement as in the present
paper. Instead, cross-correlation analyses of the velocity of the
finger flexion and extension across the produced intervals in a
sequence showed that there was little dependence between
interval timing and movement kinematics. As a hole, our
findings and those obtained previously (Doumas and Wing
2007) suggest that the key element for timing control is the
movement pause during the SCT, although changes in the
movement trajectory can be performed for small adjustments
or correction purposes.

In a series of psychophysical papers, Zelaznik and collabo-
rators have suggested that explicit and implicit timing behavior
can be dissociated (Robertson et al. 1999; Zelaznik et al. 2002,
2005). Classical explicit event timing tasks include the SCT,
interval reproduction, and the discrimination and categoriza-
tion of time intervals (Ivry and Hazeltine 1995), and perfor-
mance in all of them follows the scalar property of interval
timing (Merchant et al. 2008b). A key element in all these tasks
is the phasic component of the perceived or executed durations,
and different hypothesis have been delineated regarding its
neural underpinnings (Buhusi and Meck 2005; Karmarkar and
Buonomano 2007; Merchant et al. 2013a). In contrast, the
continuous drawing task, where subjects constantly move their
arm in synchrony with a sensory metronome or an internal cue,
has been associated with an implicit timing process. Indeed, it
has been suggested that the emergent temporalization of con-
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tinuous behaviors is not associated with a dedicated neural
timing mechanism (Ivry et al. 2002; Spencer et al. 2003, 2007).
The present kinematic observations demonstrate the phasic
nature of the control that the monkeys exert on their tapping
behavior during the SCT. Most of the movement variability is
explained by the pause duration, whereas the movement exe-
cution is somehow stereotyped. Furthermore, previous electro-
myography measurements in different muscles of the forearm,
arm, and shoulder of monkeys executing the SCT have cor-
roborated the low variation of the movement and the phasic
activation of the musculature of the tapping arm (Merchant et
al. 2011). Finally, the Bayesian model selection indicated that,
in contrast to the pause duration, the movement duration is not
importantly affected by the interval, modality, or serial order of
the SCT. Hence, our results support the idea that the timing
mechanism engaged during the SCT triggers a fixed program
that controls the downward movement, the button press, and
the upward movement to get the hand in the pause position.

The explicit timing strategy used by the monkeys during the
SCT can be simply explained by the interaction of three

populations of ramping neurons in the medial premotor areas,
previously described in our laboratory (Merchant et al. 2011).
The instantaneous activity of these cells could encode: 1) the
elapsed time since the previous tap, by showing an up-down
profile of activation whose duration changes as a function of
the time passed; 2) the remaining time to the next tap, by
showing a linear increase in activity that peaks at a particular
time before the movement execution (independently of the
interval duration); or 3) the tapping movements, by showing
the same profile of activation across the serial order and
interval durations. Figure 6 shows the ramping activity of the
three ramping cell types during the SCT. We suggest that the
tight interaction between the elapsed and remaining time ramps
define the pause duration of each element of the rhythmic
sequence. Then, once the time-remaining cells reach a partic-
ular activity level, they trigger the motor ramps and the motor
command involved in the control of the fixed chain of
movements engaged in a single stereotyped tapping behav-
ior. Finally, the corollary discharge of the tapping move-
ment activates, again, the elapsed time-ramping cells in
another rhythmic cycle of the SCT.

APPENDIX A: LIST OF THE STATISTICAL MODELS

In this Appendix section, we describe the complete collection of
statistical models, starting from the simplest one.

M0 is the simplest model, including no effect of any factor:

� � � j
1 � �k

2 � � jk
12 � � j

1 � �k
2 � � jk

12 � 0

yijk � � � tijk
s �ijk, �ijk � N�0, �2� (M0)

M1 only takes into account the effect of the time interval tijk
s :

� j
1 � �k

2 � � jk
12 � � j

1 � �k
2 � � jk

12 � 0

yijk � � � �tijk
s � tijk

s �ijk, �ijk � N�0, �2� (M1)

M2 includes the effect of the modality (visual or auditory):

� � � j
1 � �k

2 � � jk
12 � � j

1 � � jk
12 � 0

yijk � � � �k
2 � tijk

s �ijk, �ijk � N�0, �2� (M2)

In M3, we consider a conjoint effect of the modality (visual or
auditory) and of the time interval:

� j
1 � � jk

12 � � j
1 � � jk

12 � 0

yijk � � � �k
2 � �� � �k

2�tijk
s � tijk

s �ijk, �ijk � N�0, �2� (M3)

In M4, we consider an effect of the serial order of the movement in the
trial sequence (only):

� � � j
1 � �k

2 � � jk
12 � �k

2 � � jk
12 � 0

yijk � � � � j
1 � tijk

s �ijk, �ijk � N�0, �2� (M4)

In M5, we take into account a conjoint effect of the serial order of the
movement in the trial sequence and of the time interval:

�k
2 � � jk

12 � �k
2 � � jk

12 � 0

yijk � � � � j
1 � �� � � j

1�tijk
s � tijk

s �ijk, �ijk � N�0, �2� (M5)

In M6, we consider an effect of the serial order of the movement in the
trial sequence and of the modality (without interaction):

� � � j
1 � �k

2 � � jk
12 � � jk

12 � 0
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Fig. 6. A model of three ramping cell populations that control the pause
duration and the execution of a ballistic cascade of movements associated with
the stereotyped tapping behavior. A: times of the seven button presses recorded
by the corresponding interphase. B: velocity profile of the movement extracted
from the video recordings of the behaving monkeys. The thin vertical lines
correspond to the times of button press, in accordance with A. C and
D: movement and pause durations, respectively, directly computed from the
velocity profile above. E: model that suggests that the tight interaction between
the elapsed and remaining time ramping cells defined the pause duration. Once
the remaining time cells reach a particular threshold in activity, they trigger the
activity of the motor ramps that control of the fixed chain of movements
engaged in a single stereotyped tapping behavior.
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yijk � � � � j
1 � �k

2 � tijk
s �ijk, �ijk � N�0, �2� (M6)

M7 is like model M6, but also takes into account the time interval (still
without interaction between variables 1 and 2):

� jk
12 � � jk

12 � 0

yijk � � � � j
1 � �k

2 � �� � � j
1 � �k

2�tijk
s �

�ijk, �ijk � tijk
s N�0, �2� (M7)

M8 is the same as model M6, but including and interaction between
variables 1 and 2:

� � � j
1 � �k

2 � � jk
12 � 0

yijk � � � � j
1 � �k

2 � � jk
12 � tijk

s �ijk, �ijk � N�0, �2� (M8)

M9 is the complete model (effect of the serial order of the movement
in the trial sequence, of the time interval and of the modality, with
interaction between variables 1 and 2) and has been given before.

Besides, we are also interested in the effect of synchronization/
continuation (j � 1, 2, 3 or j � 4, 5, 6) over the movement. In this
case, we cannot introduce a third variable because this one would be
included in the variable “serial order of the movement.” So we just
want to define a new submodel of the ones previously described. Also
previously, for each model, including the variable “serial order of the
movement” (e.g., models M4–M9), we propose a new submodel such
that

�1
1 � �2

1 � �3
1 �4

1 � �5
1 � �6

1

�1
1 � �2

1 � �3
2 �4

1 � �5
1 � �6

1

As a consequence, we add six submodels to our collection of models.
The collection of models and their number of parameters are summa-
rized in the Table 1.

APPENDIX B: BAYESIAN MODEL SELECTION

General Comments on Bayesian Model Selection

Model selection is a key issue in statistical inference. Assume that
you have a set of data y and a collection of models M1,..., MM in
competition. Each model is defined by a likelihood lm(y|	m), depend-
ing on a set of unknown parameters 	m of dimension dm.

The principle of model selection is to set a quantitative criteria
aimed at choosing (among the given collection) the model which is
the “most adapted” to the data y. Of course, the term “most adapted”
is controversial. However, intuitively, we agree that a good model
selection criteria should ensure a balance between the goodness of fit
(how the model fits the data) and the simplicity of the model (in
general its number of parameters dm). Indeed, any extremely compli-
cated model can fit to any data, but, in this case, the parameters may
have no sense. In classical statistical inference, the goodness of fit is
generally quantified through the likelihood function approach. The
most famous model selection criteria are the Akaike Information
Criteria (AIC) and the Bayesian Information Criteria (BIC). Each of
them attributes a score to the models, and this score is used to order
the models. AIC or BIC scores are defined as follows:

AIC�Mm� � lm�y�	̂m� � logdm, BIC�Mm� � lm�y�	̂m�
� 0.5dm log�n�

where n is the number of observations, dm is the dimension of the
parameters, and 	̂m is the maximum likelihood estimator of 	m:	̂m �
argmax	m

lm(y|	m). Both AIC or BIC encourage models with a good fit
[high maximized likelihood lm(y|	̂m)] but penalize the dimension of
the model (dm) in a different way.

Remark 2. Note that, when one wants to compare only two models
Mm and Mm=, it is standard to propose a statistical hypothesis test

relying on the likelihood ratio: R �
lm�y�	̂m�

lm'�y�	̂m'�
. Model Mm= will be

rejected as soon as this ratio is greater than a threshold s�, which
depends not only on the level of the test �, but also on the respective
dimensions of the models Mm and Mm=, dm and dm=. The idea is the
same as for a full set of models: the chosen model will ensure a
compromise between goodness of fit and simplicity.

Bayesian model selection (Marin and Robert 2007; Robert 2007) is
the Bayesian alternative to classical model selection. As before, we
consider a collection of models M1,...,MM, with each model Mm being
characterized by a likelihood function lm(y|	m) and a set of parameters
	m. In Bayesian inference, a prior distribution is set on the parameters
	m:	m � 
m(	m). For each model Mm, this prior distribution is updated
into the posterior distribution pm(	m|y). Thanks to the Bayes formula,

pm�	m�y� �
lm�y�	m�
m�	m�

p�y�Mm�
where p(y|Mm) is the normalizing constant of

the posterior distribution, also called the marginal likelihood and equal to

p(y|Mm)��
	m

lm(y|	m)
m(	m)d	m.

When it comes out to Bayesian model selection, a prior probability
distribution is set on the collection of models [p(Mm)]m�1...M. In
general, we consider a uniform prior probability on the models
(meaning that we do not prefer any model a priori): p�Mm� �
1

M
,∀m � 1...M. As for the parameters, the prior probability of each

model can be updated into a posterior probability, taking into account
the data y. The posterior probability of each model is obtained through
the Bayes formula:

p�Mm�y� �
p�y|Mm�p�Mm�

p�y�
where p(y) is the normalizing constant p�y� � �m�1

M p�y�Mm�p�Mm�
and p(y|Mm) is the marginal likelihood of model Mm. These posterior
probabilities will be used as scores to rank the models. Note that,
contrary to classical model selection, no penalty needs to be consid-
ered. Thanks to the integration over the prior distribution, the poste-
rior probabilities automatically penalize models with a large number
of parameters (Berger at al. 2001).

Remark 3. The comment on the automatic choice of the penalty is
supported by the fact that (for regular models) one can prove that, as
the number of observations tends to infinity, the marginal likelihood
can be approximated by the BIC. Moreover, note that no asymptotic
assumption is made in the Bayesian model selection framework: this
point is an argument in favor of the Bayesian framework vs. the
classical one.

Remark 4. Note that, to compare two models, Mm and Mm=, we
will naturally compute the ratio of the posterior probabilities. This
ratio, called Bayes factor, is expressed as:

Bm,m' �
p�Mm�y�
p�Mm'�y�

�
p�y�Mm�p�Mm�
p�y�Mm'�p�Mm'�

�
p�y�Mm�
p�y�Mm'�

Thus the Bayes factor is a likelihood ratio. However, whereas in the
classical statistical inference the parameters are “eliminated” by
maximization, in the case of the Bayes factor, they are eliminated by
integrating them out into the marginal likelihood.

Bayesian Model Selection for the Heteroscedastic Linear
Model

In the heteroscedastic linear model, the posterior probabilities can
be computed in a close form [provided a judicious choice of 
m(	m)],
thanks to a rescaling of the data. The details are given hereafter. First,
we transform our heteroscedastic linear model into a homoscedastic
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linear model. Then we specify the parameters, set identifiability
conditions and define the prior distributions. Finally, we derive
explicit expressions for the posterior distribution and the marginal
likelihood. Note that all the details are given for the complete model
(M9), with the calculus being exactly the same for the other models.

From hetereroscedatic to homoscedastic model. Provided a
rescaling of the data with respect to tijk

s , the heteroscedastic model can
be written as a standard linear model with constant noise variance �2:

ỹijk �
yijk

tijk
s � �� � � j

1 � �k
2 � � jk

12��tijk
s ��1

� �� � � j
1 � �k

2 � � jk
12� � �ijk

�ijk � i.i.d N�0, �2�
Identifiability. The parameters of interest of the complete model

(M9) are 	 � (�, �, �2), where

� � ��, �� j
1� j�1...6, ��k

2�k�1,2, �� jk
12� j�1...6,k�1,2�

� � ��, �� j
1� j�1...6, ��k

2�k�1,2, �� jk
12� j�1...6,k�1,2�

To ensure the identifiability of the parameters, we set the following
conditions:

�1
1 � �1

1 � �1
2 � �1

2 � 0, �1j
12 � �1j

12 � 0 ∀ j � 1 ... 6 and
�21

12 � �21
12 � 0

Model M9 has the following matricial form:

ỹ � �X0, Xtime�	�T

�T
 � �� � X� � ��, � � N�0, In�

where ỹ � �n denotes the collection of rescaled data ỹ �

�ỹijk�i�1...njk,j�1...6,k�1,2, xT is the transposed of x. � � 	�T

�T
� �p

(with p � 24 for model M9). X0 and Xtime are matrices with 12
columns, such that their respective lines l, corresponding to trial i,
modality k and tap serial order j, are equal to:

Xl,●
0 � �tijk

s ��1v and Xl,●
time � v

where  � (1, I{j�2}, I{j�3}, I{j�4}, I{j�5}, I{j�6}, I{k�2}, I{j�2, k�2},
I{j�3, k�2}, I{j�4, k�2}, I{j�5, k�2}, I{j�6, k�2}) and I{} is the index
function.

Prior distributions on 	 � (�, �2). We consider the following
standard conjugate Zellner prior distribution on 	 � (�, �2):

�|�2, X � N�0�p, c�2�XTX��1�, �2 � Inv��a, b�
where Inv�(a, b) is the Inverse Gamma distribution. Note that the
imposed identifiability conditions ensure the existence of (XT X)�1. In
our application, the hyper-parameters (a, b, c) are set as follows. c
controls the influence of the prior in the prior: as c goes to infinity, the
influence vanishes at rate 1/c. Setting c � 1 corresponds to giving the
same weight to the data and the prior. In our case, we set c � 10,000,
corresponding to a diffuse prior distribution. a and b control the prior
distribution of �2. We set a � b � 0, leading to an improper
(noninformative) prior distribution on �2:
(�2) 	 (�2)�1 (i.e., the
prior distribution is not a probability distribution, but the posterior
distribution is). The use of a noninformative prior in a model selection
context is in general prohibited. However, this rule does not apply
here, since �2 has the same role in all the models in competition.

Posterior distributions of (�, �2|ŷ). From model M9 and using
the conjugacy of the prior distribution, we get the following posterior
distribution:

���2, X, ỹ � N�mpost, �post �, �2 � Inv ��apost, bpost�
with

mpost �
c

c � 1
�̂, �post �

�2c

c � 1
�XTX��1

apost � a �
n

2
, bpost � b �

s2

2
�

1

2�c � 1�
ỹ2X�XTX��1XT ỹ

where �̂ � (XT|X)�1 XT ỹ is the mean square estimator of �, and
s2 is the residual variance (up to a constant): s2 � (ỹ � X�̂)T (ỹ � X�̂)
(Marin and Robert 2007).

Marginal likelihood. As exposed before, the Bayesian model
selection procedure relies on the marginal likelihoods. In the special
case of the linear model with the conjugate Zellner prior, we are able
to compute explicitly this quantity (see Marin and Robert 2007):

p(ỹ|M) �
ba

��a�
1

�2
�
n
2�c � 1�

p
2

�	n

2
� a
	1

2
ỹT R�1ỹ � b
 n

2
�a

where R � In � cXT (XTX)�1 XT, and p is the size of �.
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