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Bayesian Analysis of ODEs: Solver Optimal Accuracy and Bayes Factors∗
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Abstract. In most cases in the Bayesian analysis of ODE inverse problems, a numerical solver needs to be
used. Therefore, we cannot work with the exact theoretical posterior distribution but only with an
approximate posterior derived from the error in the numerical solver. To compare an approximate
posterior distribution with the theoretical one, we propose using Bayes factors (BFs), considering
both of them as models for the data at hand. From a theoretical point of view, we prove that the
theoretical vs. numerical posterior BF tends to 1, in the same order as the numerical solver used. In
practice, we illustrate the fact that for higher order solvers (e.g., Runge–Kutta) the BF is already
nearly 1 for step sizes that would take far less computational effort. Considerable CPU time may
be saved by using coarser solvers that nevertheless produce practically error-free posteriors. Two
examples are presented where nearly 90% CPU time is saved, with all inference results being identical
to those obtained using a solver with a much finer time step.
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1. Introduction.

1.1. Context and issues. In a comprehensive review of recent publications on the Bayesian
analysis of inverse problems it is clear that there is a steady growing interest in the uncer-
tainty quantification approach provided by the Bayesian paradigm. Recent reviews on the
Bayesian analysis of inverse problems include Mohammad-Djafari (2006), Kaipio and Fox
(2011), Watzenig and Fox (2009), or Woodbury (2011).

In recent years, the use of Bayesian inference has emerged not only in the field of image
processing (Cai et al. (2011); Chama et al. (2012); Fall et al. (2011); Kolehmainen et al. (2007);
Kozawa, Takenouchi, and Ikeda (2012); Nissinen, Kolehmainen, and Kaipio (2011); Zhu et al.
(2011), to mention some recent references), but also in a whole range of emerging application
areas (see Calvetti et al. (2006); Cui, Fox, and O’Sullivan (2011); Hazelton (2010); Kaipio and
Fox (2011); Keats, Yee, and Lien (2010); Wan and Zabaras (2011), to name but a few).

With this increasing use of the Bayesian paradigm in applied inverse problems, theoret-
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ical questions have emerged and some answers have been proposed. We now have access to
important theoretical results on the definition of posterior distributions in infinite dimensions
and regularity conditions for correct approximate schemes through numerical, finite dimension
posteriors (e.g., Schwab and Stuart (2012)) that provide a sound theoretical background to
the field.

However, as far as we know, only a handful of publications mentions or uses Bayesian
predicting tools, that is, the posterior (predictive) distribution of as yet unobserved vari-
ables (Capistrán, Christen, and Velasco-Hernández (2012); Kaipio and Fox (2011); Somersalo,
Voutilainen, and Kaipio (2003); Vehtari and Lampinen (2000)), and even fewer consider for-
mally the Bayesian model selection and model comparison tools. In this paper, we aim at
highlighting the interest of using Bayes factors (BFs) in the inverse problem context.

Predictive power is always a desirable property of mathematical models and inference,
beyond parameter estimation, for model parameters that may or may not have straightforward
physical meaning. We believe that comparing forward models as statistical models is the way
to proceed when predictive power is of primary interest. The Bayesian model comparison and
model averaging tools, in particular pairwise model comparison using BFs, are in such cases
the main tool to be used in this context (Hoeting et al. (1999)).

In particular, BFs could be used when analyzing the numerical vs. the theoretical versions
of the resulting posterior distribution. More precisely, in inverse problems, the forward map
is defined as the solution of a system of ODEs (or PDEs, etc.) and represents a complex
regressor that is only theoretically defined. The actual usage of the model necessarily involves
a numerical solver that includes an approximation error depending on the solver step size h.
Therefore, on the one hand, there is an exact statistical model M relying on the theoretical
solution of the forward map and depending on some parameters φ. On the other hand, the
inference is performed on an approximate model relying on the approximate solution of the
ODE, Mh, and depending on the same parameters φ. Accordingly we derive a theoretical
posterior distribution PΦ|Y (φ|y) and an approximate posterior distribution P hΦ|Y (φ|y).

Recently a series of papers (e.g., Schwab and Stuart (2012)) discussed regularity conditions
under which P hΦ|Y (φ|y) tends to PΦ|Y (φ|y) as the approximation error in the forward map tends

to zero, using a suitable metric. A metric comparison (i.e., ||PΦ|Y (·|y)−P hΦ|Y (·|y)||) is useful in
proving the required convergence theorems, but more practical considerations will be needed
when evaluating the relative benefits of a numerical approach with a particular solver step
size h (for data y).

We claim that PΘ|Y (·|y) and P hΘ|Y (·|y) (or P hiΘ|Y (·|y) for any other solver step size hi) may

be compared as models: PΘ|Y (·|y) is the reference model but is computationally expensive

and sometimes only theoretically available model, while the approximate P hiΘ|Y (·|y), for various
solver precisions h1, h2, . . ., are the alternative less computationally demanding models. BFs
may then be used to establish a sound comparison, to balance predictive power on the one
hand vs. solver CPU time on the other, to establish a useful solver precision. We attempt to
establish how to approximate the BFs, without having the theoretical reference model and
using solely the numerical solver approximation rates.

Xue, Miao, and Wu (2010) address related issues of this problem in the statistical analysis
of ODE systems from a frequentist perspective. Under several assumptions—in particular,
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global identifiability and sufficient smoothness of the nonlinear least-squares estimator—point
estimation is shown to be consistent, and with asymptotic normality, under random designs.
They provide additional results showing that the step size h of the solver needs to tend to
zero at some rate dependent on the sample size in order to have consistency and normality.
However, only in passing do they mention the CPU vs. precision trade-off problem. We
contribute to the latter and discuss further related issues in a Bayesian context, for a fixed
sample, and in a far weaker setting.

1.2. Notation. Assume that we observe a process y = (y1, . . . , yn) at the discrete times
t1, . . . , tn ∈ [0, T [n such that

(1.1) yi = f(Xθ(ti)) + εi, εi ∼i.i.d. N (0, σ2), (M)

where Xθ is the solution of the following system of ODEs, namely, the forward map:

(1.2)
dXθ

dt
= F (Xθ, t, θ); Xθ(t0) = X0.

θ ∈ A ⊂ Rd is a vector of unknown parameters, and F : Rp × [0, T [×A 7→ Rp is a known
function. In our results we take σ2 ∈ S ⊂ R+ to be unknown.

Assumption 1. We assume throughout the paper that the function F on the right-hand side
of the initial value problem (1.2) follows the regularity conditions of Picard’s theorem (see
Süli and Mayers (2003, p. 311), for example) for all θ ∈ A to ensure the existence of a unique
solution in the referred initial value problem. We also assume for the parametric space that
A and S are compact sets.

f : Rp → Rk in (1.1) is the observation function. Many types of observation functions f
can be considered, modeling, for instance, the observation of a single component of the p-vector
Xθ(t) or a (linear) combination of the components. In this paper, for the sake of simplicity,
we consider a one-dimensional observation problem only, that is, k = 1. Generalizations of
our results to multivariate observations are possible and will be briefly mentioned in section 6.

In the Bayesian paradigm, any statistical decision from the data y—such as estimation,
prediction, or model selection—relies on the likelihood function

(1.3) PY|Φ(y|θ, σ) = σ−n(2π)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − f(Xθ(ti)))
2

}
,

where Φ = (Θ,Σ) is a random variable with particular realization φ = (θ, σ). This expression
involves the computation of Xθ, a solution of (1.2). However, except in very simple cases, an
explicit expression of the solution is in general not available (although its existence is ensured
by the regularity conditions on F ). As a consequence, in practice, the system (1.2) is solved
using a numerical solver and inference is performed, not on the previous “exact” model but
on an approximate model, namely,

(1.4) yi = f(Xh
θ (ti)) + εi, εi ∼i.i.d. N (0, σ2), (Mh)
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where Xh
θ denotes the approximate solution of (1.2) supplied by the numerical solver (h being

a precision parameter of the solver, typically its step size). The new likelihood derived from
model Mh is thus

P hY|Φ(y|θ, σ) = σ−n(2π)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − f(Xh
θ (ti)))

2

}
.

Since in general there is no choice but to use the approximate model in (1.4), there exists
a real need to understand and control the error made when working with P hY|Φ(y|θ, σ) instead

of PY|Φ(y|θ, σ). As implied above, this is the problem we aim to discuss in this paper.
To that purpose, a first natural choice is to compare the posterior distributions calculated

from models (M) and (Mh). Such a study has been proposed by, for example, Donnet and
Samson (2007). However, when comparing models in a Bayesian context, the natural tools
are BFs. In this work, we recall their importance, propose an efficient way to compute them
in this context, and study some theoretical aspects of their calculation when the exact model
is not available.

The paper is organized as follows. In section 2 we discuss the choice of a solver and its
required properties from a Bayesian inverse problem point of view. In section 3, we develop
some practical results on error control on posterior distributions as well as on BFs. Some
practical aspects of the Bayesian inference and the calculation of BFs (in this inverse problem
context) are discussed in section 4. Our results are illustrated both with a simulation study
and with real data in section 5. Finally, a discussion of the paper is presented in section 6.

2. ODE solvers from a Bayesian inverse problem point of view. Bayesian analysis
for inverse problems strongly relies on the numerical approximation of the underlying ODE
system. One can choose to use a standard (more or less advanced) implemented solver as a
black box, in a sense assuming that no approximation is made on the model. However, in our
approach, we aim at understanding the influence of this approximation. As a consequence, we
are interested in the inherent properties of the numerical solver. When it comes to qualifying
a numerical solver, three properties arise, namely, its error (local or global), its stability, and
its stiffness.

There is a plethora of numerical methods for solving the initial value problem (1.2). Note-
worthy are time-stepping methods based on Taylor approximation of the function F , linear
multistep methods, and Runge–Kutta methods. These methods span many orders of local
accuracy. Besides the order of accuracy, standard requirements for a numerical method are
consistency, convergence, and stability (Iserles (1996); Quarteroni, Sacco, and Saleri (2007)).
However, even when these latter conditions hold, a common concern in the numerical solution
of the initial value problem (1.2) is error control.

Two types of error may be considered, namely, the local and the global errors (Quarteroni,
Sacco, and Saleri (2007)). Let h be the step size of the method. In simple terms define a time
grid as ti+1 = ti + h for some fixed h > 0, and let Xθ,i be the solver approximation of Xθ(ti)
(t0 = 0). Local truncation error is the error made in one step of the numerical method, while
global error Ei is the difference between the computed solution and the true solution at any
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given value of t belonging to the grid (Süli and Mayers (2003, Chap. 12)), that is,

Ei = Eh(ti, θ) = ||Xθ(ti)−Xθ,i||2.

Set Xh
θ (ti) = Xθ,i. The numerical solver is said to have global error control of order p if

(2.1) max
t∈{t0,t1,t2,...,tn}

||Xθ(t)−Xh
θ (t)|| ≤ Cθhp

for some constant Cθ independent of h. This global error order control characteristic will be
needed in section 3.2 to prove our main result.

The solver to be used to approximate the solution of the ODE at hand needs to be
suitable and carefully chosen to achieve acceptable performance over the whole parametric
space. Arnold, Calvetti, and Somersalo (2013, 2014) stress this fact precisely in the con-
text of Bayesian inference and favor the use of linear multistep methods, like the Adams–
Bashforth or Adams–Moulton methods for nonstiff ODEs or the backward differentiation
formulae (BDF) for stiff systems. In our experience we have worked with the LSODA FOR-
TRAN package (which is now available in a series of platforms, including Python-SciPy and
R; see Radhakrishnan and Hindmarsh (1993)) that dynamically chooses between precisely the
previously mentioned solvers. These solvers also tend to be favored in the recent numerical
analysis literature (see Süli and Mayers (2003, Chap. 12), for example).

However, the only crucial requirement to establish our main result, as far as the numerical
solver is concerned, is the global error control shown in (2.1). The common Adams-type and
BDF methods are designed to be zero-stable, which in turn may be proved to possess global
error control as in (2.1) (Dahlquist’s equivalence theorem; see Süli and Mayers (2003, p. 340))
for p ≥ 4. To ease our presentation and illustrate our results, we chose two ODE examples
which are not particularly stiff, and even a simple Runge–Kutta may be used as solver, for
which p = 4. In fact, in section 5.1 we also used solvers with p = 2 and p = 1 (Runge–Kutta
order 2 and the Euler method, respectively) to further illustrate our result in Theorem 2.

In the numerical community, “error control” means keeping the local and global errors
under a fixed level (beyond the above-mentioned asymptotic results). The local error may be
controlled directly, using, for instance, the “Milne device” (Iserles (1996)). However, there
are no known general methods to control global error En, although some methods exist to
estimate it; see, for instance, those relying on adjoint state analysis (Cao and Petzold (2004);
Lang and Verwer (2007)). In the results that follow, we do not require an estimation of the
global (or local) error, solely the knowledge of the global error order for the solver at hand.

Another important issue in the numerical solution of problem (1.2) is stiffness (Lambert
(1991)). Many systems of ODEs modeling real-life phenomena are stiff (Gutenkunst et al.
(2007)); however, error control in stiff systems is more complex since variable multistep implicit
solvers are commonly required. Therefore, we prefer not to consider stiff systems and take
nonstiff systems for the two examples in section 5. We add a comment on stiff systems in
relation to the methods presented here in section 6.

The results shown in this paper assume a fixed step method. As previously mentioned,
our examples only use the Euler and Runge–Kutta methods (orders p = 1, 2, 4, respectively).

3. Theoretical results for Bayesian model comparison in inverse problems. We consider
a Bayesian framework, setting a prior distribution PΦ(θ, σ) on the unknown parameters. We
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denote by P hΦ|Y(θ, σ|y) (respectively, PΦ|Y(θ, σ|y)) the posterior distribution of the approxi-

mate (respectively, exact) model, that is,

P hΦ|Y(θ, σ|y) =
P hY|Φ(y|θ, σ)PΦ(θ, σ)

P hY(y)
,

PΦ|Y(θ, σ|y) =
PY|Φ(y|θ, σ)PΦ(θ, σ)

PY(y)
,

where P hY(y) =
∫
P hY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ and PY(y) =

∫
PY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ are the

normalization constants of the two models, also called the marginal likelihoods of data y.
In the next section we discuss the convergence rate of the approximate to the theoretical

posterior. In section 3.2 we compare both models using BFs.

3.1. Error control of the approximate posterior distribution. A basic related result may
be found in Donnet and Samson (2007) comparing the posterior distributions of the exact
and approximate models, respectively—namely, PΦ|Y and P hΦ|Y—through the total variation
distance.

Theorem 1. Assume that φ = (θ, σ) remains in a compact set A×S and that the numerical
scheme of step size h is such that {t1, . . . , tn} ⊂ hN and

(3.1) max
t∈{t1,...,tn}

‖Xθ(t)−Xh
θ (t)‖Rp ≤ Cθhp.

Also assume that the observation function f is differentiable with a bounded derivative. Then
there exists a constant Cy such that for every (θ, σ) and h small enough

(3.2) |PΦ|Y(θ, σ;y)− P hΦ|Y(θ, σ;y)| ≤ CyPΦ(θ, σ)hp.

As a consequence,

(3.3) ||PΦ|Y − P hΦ|Y||TV ≤ Cyh
p,

where || · ||TV is the total variation metric. Moreover, there exists another constant C ′y such
that

(3.4) ‖(θ̂L2
, σ̂L

2
)− (θ̂h,L

2
, σ̂h,L

2
)‖ ≤ hpC ′y,

where θ̂L
2
, σ̂L

2
and θ̂h,L

2
, σ̂h,L

2
are the posterior expectations of Θ and Σ in the exact and

approximate models, respectively.

Proof. The results of Donnet and Samson (2007) were developed for nonlinear mixed
effects models in a maximum likelihood context but may be adapted to models (1.1) and
(1.4). Inequality (3.2) is derived from Theorem 4 of Donnet and Samson (2007). The error
control on the total variation distance is derived directly. Inequality (3.4) is obtained as
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follows: ∥∥∥(θ̂L
2
, σ̂L

2
)− (θ̂h,L

2
, σ̂h,L

2
)
∥∥∥

=

∥∥∥∥∫ (θ, σ)PΦ|Y(θ, σ|y)dθdσ −
∫

(θ, σ)P hΦ|Y(θ, σ|y)dθdσ

∥∥∥∥
=

∥∥∥∥∫ (θ, σ)
[
PΦ|Y(θ, σ|y)− P hΦ|Y(θ, σ|y)

]
dθdσ

∥∥∥∥
≤
∫
‖(θ, σ)‖CyPΦ(θ, σ)hpdθdσ

≤hpCy

∫
‖(θ, σ)‖PΦ(θ, σ)dθdσ = hpC ′y.

Therefore the numerical posterior approximates the theoretical posterior at the same rate
of the solver order. Cotter, Dashti, and Stuart (2010) also presents error control results of the
same type.

Even if these results provide interesting theoretical insights, they rely on unknown con-
stants and therefore cannot be used as such in practice. In the next section, we adopt a BF
point of view and highlight that such an approach leads to results of more practical interest.

3.2. Comparing the exact and approximate models through BFs. In the Bayesian
paradigm, model selection is performed using the BFs defined as follows (see Kass and Raftery
(1995) for details). Let y be the observed data, and let M and Mh be our two models in
competition (defined in (1.1) and (1.4)).

Consider a prior distribution on the set of the models {M,Mh}; the decision between
the competing models M and Mh is based on the ratio of the posterior probability for each
model, namely, the BF

BM,Mh
=

P (M|y)

P (Mh|y)
=
PY(y)

P hY(y)

P (M)

P (Mh)
,

where P hY(y) and PY(y) are the integrated likelihoods, or marginal distributions, of y from
model Mh and M, respectively, defined by

P hY(y) =

∫
P hY|Φ(y|φ)PΦ(φ)dφ and

PY(y) =

∫
PY|Φ(y|φ)PΦ(φ)dφ.

As above, P hY|Φ(y|φ) and PY|Φ(y|φ) are the approximate and theoretical likelihoods, respec-

tively, and PΦ(φ) is the (common) prior distribution for the parameters Φ = (Θ,Σ).∫
PY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ has in general no closed form, and several methods have been

proposed to estimate it (see section 4). However, all the classical methods (such as Monte
Carlo or Markov chain Monte Carlo) require the computation of the likelihood function, which
is not available in the theoretical model M. To tackle this point, we present our main result
in the following theorem.
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Theorem 2. Assume that the numerical solver is such that the global error may be written
as

(3.5) max
t∈{t0,t1,t2,...,tn}

||Xθ(t)−Xh
θ (t)|| ≤ Cθhp,

where h is the step size of the method. In addition, assume that the observation function f
is differentiable on {Xθ(t), θ ∈ Θ, t ∈ [0, T ]}. Then PY(y) = P hY(y) + O(hp). That is, there
exists a constant B(y) ∈ R (which does not depend on h) such that

PY(y)

P hY(y)
' 1 +B(y)hp.

Proof. Using the asymptotic behavior of the global error truncation in (3.5) and assuming
that f is differentiable, we can write

(3.6) Dh(t, θ) = f(Xh
θ (t)) − f(Xθ(t)) = ∇f (Xθ(t)) (Xh

θ (t) − Xθ(t)) + O(h2p) = O(hp).

This approximation allows us to obtain a development of the marginal likelihood. Let Rh(φ) =
Ph
Y|Φ(y|θ,σ)

PY|Φ(y|θ,σ) . Then

P hY(y) =

∫
P hY|Φ(y|φ)PΦ(φ)dφ =

∫
PY|Φ(y|φ)Rh(φ)PΦ(φ)dφ

= PY(y) +

∫
PY|Φ(y|φ)(Rh(φ)− 1)PΦ(φ)dφ.

We see that

(3.7) Rh(φ)− 1 = exp

{
− 1

2σ2

n∑
i=1

[
f(Xh

θ (ti))− f(Xθ(ti))
]2

+ 2 [yi − f(Xθ(ti))]
[
f(Xθ(ti))− f(Xh

θ (ti))
]}
− 1

= − 1

2σ2

n∑
i=1

Dh(ti, θ)
2 + 2(yi − f(Xθ(ti)))Dh(ti, θ) +O(Dh(ti, θ)

2),

since ex − 1 = x + O(x2) for x small enough. Using the expression in (3.6) for Dh, we must
have that Rh(φ)− 1 = O(hp). From this (and since, from Assumption 1, the parameter space
is compact) we get P hY(y) = PY(y)+O(hp). Indeed, this also implies PY(y) = P hY(y)+O(hp),
and therefore for h small enough,

PY(y)

P hY(y)
' 1 +B(y)hp.
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Corollary 1. If ĝ =
∫
g(φ)PΦ|Y(φ|y)dφ and ĝh =

∫
g(φ)P hΦ|Y(φ|y)dφ exist, then

|ĝh − ĝ| = PY(y)

P hY(y)
Bg(y)hp = O(hp)

for some constant Bg(y).

Proof. Note that |ĝh − ĝ| =
∣∣ ∫ g(φ)Rh(φ)PY(y)

Ph
Y(y)

PΦ|Y(φ|y)dφ− ĝ
∣∣ and therefore

|ĝh − ĝ| = PY(y)

P hY(y)

∣∣∣∣∫ g(φ)(Rh(φ)− 1)PΦ|Y(φ|y)dφ−
(
P hY(y)

PY(y)
− 1

)
ĝ

∣∣∣∣ .
Combining (3.7) and the above theorem, one reaches the result.

We comment on the above result:
• From (3.7), we note that the error in the regression term Dh(t, θ) is not important

per se except in respect to the observation noise standard error σ. This obvious remark has
consequences. It means that when working on a statistical model involving the numerical
approximation of a differential system, there is no need for choosing a step size as small as
possible; it is enough simply to adapt it such that the global error is small with respect to σ.
This can allow computational time savings, as illustrated by the numerical examples presented
in section 5.
• Note that B(y) depends only on the numerical method and on the data, but not on the

step size h.
• The marginal likelihood PY(y) of the unavailable theoretical model now may be es-

timated. Indeed, an obvious method is to compute P hkY (y) for various step sizes {hk, k =

1, . . . ,K} and fit the simple linear regression P hkY (y) = a+ bhpk; a then provides an estimation

of PY(y). This means that by using a multiresolution computation of P hkY (y) on various
approximate models, we are able to estimate the marginal likelihood of the true model. We
use this procedure to illustrate our results in section 5.

In the next section we discuss the calculation of integrated likelihoods in this context. In
section 5 we develop two examples where we illustrate our results.

4. Computation of BFs in an inverse problems context. There are some excellent re-
views concerning the Bayesian analysis of inverse problems (Fox, Palm, and Nicholls (1999);
Kaipio and Somersalo (2005)), and for a more detailed description, these or other sources
should be consulted. Here we only present the particular aspects of the field relevant to the
computation of the BFs.

4.1. Sampling the posterior distribution P h
Φ|Y(θ, σ|y). Basically only for conjugate

models the posterior distribution P hΦ|Y(θ, σ|y) has a known form and the normalizing con-

stant P hY(y) (the integrated likelihood) may be easily calculated. Otherwise, P hY(y) needs to
be calculated numerically.

If the dimension of Φ is 1 or 2, we could rely on numerical integration to obtain the normal-
izing constant P hY(y). In larger dimensions, the standard solution is to resort to Monte Carlo
methods to sample from the posterior distribution at hand. Let (θ(l), σ(l))l=1,...,M be a sample
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from the posterior distribution P hΦ|Y(θ, σ|y); the posterior mean estimator, for instance, is

approximated as (θ̂L
2
, σ̂L

2
) =

(
1
M

∑M
l=1 θ

(l), 1
M

∑M
l=1 σ

(l)
)
.

Simulation from the posterior distribution is not a direct task, and Markov chain Monte
Carlo (MCMC) algorithms (Robert and Casella (2004)) are standard tools to sample from the
posterior distribution P hΦ|Y(θ, σ|y). MCMC is especially suited for sampling from complex

multidimensional distributions and is ubiquitous in modern Bayesian analyses (Robert and
Casella (2004)). The principle of MCMC algorithms is to generate a Markov chain whose
invariant distribution is the distribution of interest P hΦ|Y(θ, σ|y). Many versions have been
proposed in the literature. Among them, the Gibbs algorithm and the Metropolis–Hastings
(MH) algorithms are the most used. While the Gibbs sampler is a very popular MCMC
algorithm, it makes sense to use it only in some particular cases (when the full conditionals
have a known form). In our inverse problem setting, this is not the case, and the general
MH MCMC algorithm needs to be used instead (Robert and Casella (2004)). In this algorithm,
assume that the chain has reached the value φ(`); a new parameter value φ′ is proposed with
a proposal distribution q(φ′|φ(`)) and is accepted with probability

(4.1) ρ(φ′, φ(`)) = min

{
1,

P hY|Φ(y|φ′)PΦ(φ′)

P hY|Φ(y|φ(`))PΦ(φ(`))

q(φ(`)|φ′)
q(φ′|φ(`))

}
.

MCMC methods tend to be very intensive, commonly with many rejected steps. As a
consequence, in the particular case of inverse problems, these methods are even more difficult
to use since, at each iteration of the MH-MCMC, the forward map needs to be evaluated
(in order to compute the likelihood in the MH acceptance probability). It is then crucial to
minimize the number of iterations in the MCMC to be used.

Optimizing MCMC algorithms (that is to say, minimizing the number of iterations) has
been a very active research topic in the last decade. There are adaptive algorithms (Atchadé
and Rosenthal (2005); Haario, Saksman, and Tamminen (1998)) that require additional regu-
larity conditions on the adaptive scheme, model, and prior that might limit their applicability.
Christen and Fox (2010) also propose the t-walk, which self-adjusts, keeping two points in the
parameter space, and that commonly samples with reasonable efficiency. However, robust,
multipurpose, automatic, and optimal methods are still far away on the MCMC horizon (to
make an optimistic metaphor).

An initial straightforward but very useful computational economy is to save the U` =
− logP hY|Φ(y|φ(`))− logPΦ(φ(`)) at each evaluation of the unnormalized posterior within the

MCMC scheme. Indeed, this quantity will be used for any new simulated value φ′ until the
chain accepts a new point. We will see in the following subsection that these quantities can
also be recycled for model comparison purposes and the calculation of BFs.

Recently Arnold, Calvetti, and Somersalo (2013, 2014) advocated the use of sequential
Monte Carlo approaches to this problem, with the potential advantage that the ODE is
sequentially solved (“stirred”) over a progressive time interval, over a population of parameter
points. These methods may indeed present an alternative to standard MCMC methods.

4.2. Computation of the Bayes factor. We now consider the calculation of the marginal
likelihood P hY(y) involved in the BF. In our inverse problem context—where each iteration of
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the MCMC requires the computationally intensive approximation of an ODE—we would like
to avoid increasing the computational burden by using a specific MCMC and would prefer
recycling the output of the MCMC algorithm into a Monte Carlo strategy. An answer can be
found in the Gelfand and Dey estimator (Gelfand and Dey (1994)).

Assume that P hΦ|Y(θ, σ|y) is sampled using an intensive Monte Carlo procedure, typically
an MH MCMC. Assume that the prior distribution PΦ is absolutely continuous with respect
to the Lebesgue measure, and thus PΦ(θ, σ) and P hΦ|Y(θ, σ|y) are densities in the usual sense.
The Gelfand and Dey estimator relies on the expression[

P hY(y)
]−1

=

∫
α(θ, σ)

P hY|Φ(y|θ, σ)PΦ(θ, σ)
P hΦ|Y(θ, σ|y)dθdσ,

where α is any density (
∫
α(θ, σ)dθdσ = 1) with support containing the support of the poste-

rior.
Now, let θ(1), σ(1), θ(2), σ(2), . . . , θ(L), σ(L) be an MCMC sample of the posterior P hΦ|Y(θ, σ|y).

Considering the above expression, the desired marginal may be approximated by

(4.2) P̂ hY(y) =

[
1

L

L∑
l=1

α(θ(l), σ(l))

P hY|Φ(y|θ(l), σ(l))PΦ(θ(l), σ(l))

]−1

.

The choice of α conditions the quality of the estimator (its variance). If α(θ, σ) = π(θ, σ),
the estimator P̂ hY(y) is the harmonic mean, which is known to have a dramatic unstable
behavior (infinite variance) in some cases. Best strategies are those that use a weighting
density α that stabilizes this estimator, for instance, somehow using an α that resembles
P hY|Φ(y|θ, σ)PΦ(θ, σ). A simple calculation leads to the fact that using a thinner tailed α (as

opposed to the result in importance sampling) is better suited to obtaining a finite variance
for the estimator above (beyond inverse problems, Valpine (2008) discusses further strategies
to reduce this variance).

Moreover, in an inverse problem context, it is critical to avoid recalculating the likelihood
P hY|Φ(y|θ, σ) since it involves numerically solving the ODE system in (1.2). As a consequence
we propose proceeding as follows:
• At each iteration of a typical MH MCMC, the computation in (4.1) requires evaluating

P hΦ|Y(y|θ(l), σ(l))PΦ(θ(l), σ(l)). After the burn-in period, we save these values, letting Ul =

− logP hΦ|Y(y|θ(l), σ(l))− logPΦ(θ(l), σ(l)).

• A small subsample of θ(l), σ(l), typically of size less than 1,000, is then used to create a
kernel density estimate (KDE), which we will use as our weighting density α. This KDE is
(typically) a mixture of Gaussians, with support in the whole space, and will roughly resemble
the posterior P hΦ|Y.

• Let Al = − logα(θ(l), σ(l)). Then our estimate becomes

P hY(y) ≈

[
1

L

L∑
l=1

exp(Ul −Al)

]−1

.
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Figure 1. Synthetic data for the logistic growth with λ = 1, K = 1000, and σ = 1 (left) or σ = 30 (right).

This procedure is fast and basically is a by-product of the MCMC sample, with little CPU
burden added. There are robust and fast KDE routines available in popular programming
languages like R and Python-Scipy to efficiently produce the weighting function α.

Note that for the Gelfand and Dey estimator, P hY|Φ(y|θ, σ)PΦ(θ, σ) needs to be known
exactly, and coded accordingly. This might be particularly difficult in some situations as, for
example, when the prior is not normalized and only implicitly defined. In such situations
other estimators may be used (Valpine (2008)), which rely only on ratios of the unnormalized
posteriors, although perhaps at a higher computational burden. This is not the case for the
examples presented in the next section, and consequently we do not discuss this issue further.

5. Numerical examples. Here we present three examples to illustrate our results. All
examples were programmed in Python-SciPy (python.org, scipy.org) and run on a MacBook
Pro laptop with Intel core i7, 2.3 GHz processor.

5.1. Logistic growth models. We base our first numerical study on the logistic growth
model, which is a common model of population growth in ecology. Recently it has also
been used to model tumors growth in medicine, among many other applications (Foryś and
Marciniak-Czochra (2003)). Let X(t) be the size of the tumor at time t. The dynamics are
governed by the differential equation

(5.1)
dX

dt
= λX(t)(K −X(t)), X(0) = X0,

with λK being the growth rate and K the carrying capacity, e.g., limt→∞X(t) = K. Equation
(5.1) has an explicit solution equal to

X(t) =
KX0e

λKt

K +X0(eλKt − 1)
.

We simulate two synthetic data sets with the error model yi = X(ti)+εi, where εi ∼ N (0, σ2),
and the parameters X(0) = 100, λ = 1, K = 1000, σ = 1 or 30. The data sets are plotted
on Figure 1 for the two chosen values of σ. We consider 26 observations at times ti regularly
spaced between 0 and 10.

python.org
scipy.org
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Figure 2. Study on synthetic data for the logistic growth with σ = 1. The true marginal PY(y) calculated
using numerical integration on the analytic solution is represented by the thin horizontal line (red). The marginal
Ph
Y(y) for various step sizes is shown as computed by numerical integration (circles) or estimated using the

MCMC sample (triangles). Dashed lines indicate the regression for estimated values for P̂h
Y(y) = a + bhp for

the orders p = 1 (black line on the left), 2 (green), and 4 (blue).

For this example, K is taken as known, and inference is concentrated on the single pa-
rameter λ; since it is a positive parameter we consider a Gamma distribution for the prior on
λ.

To highlight our result presented in section 3, we consider the following strategy. For
σ = 1, we first compute what we call the “true” marginal likelihood PY(y) (horizontal thin
line in Figure 2), using the explicit solution of (5.1) and numerical integration (using the
unidimensional quadrature quad function from the scipy.integrate module). In a second step,
we approximate the solution of (5.1) by the Euler scheme (order 1), and Runge–Kutta solvers of
orders 2 and 4 (respectively, RK2 and RK4), for various step sizes hk. The marginal likelihood

P
hk(1)
Y (y) is computed using numerical integration and also using the Monte Carlo strategy

presented in section 4. These results are plotted with circles for the numerical integration and
triangles for the Monte Carlo computation. In the end, for each order p, the estimated values

P̂
hk(p)
Y (y) are used to compute the regression functions P̂

hk(p)
Y (y) = a + bhp (dashed lines in

Figure 2). These results are presented in Figure 2.
The same is done for σ = 30, but only the RK4 solver is considered; these results are

presented in Figure 4. The samples from the posterior distributions are obtained using the
t-walk MCMC algorithm (Christen and Fox (2010)). Next we discuss some aspects of this
numerical experiment.
•We would like to highlight that the circles and their corresponding triangles in Figures 2

and 4 are quite similar, meaning that the Monte Carlo strategy (derived as a by-product of
the MCMC implementation) is an efficient solution to estimating the marginal likelihood in
this context. This approximation does not require additional evaluations of the forward map,
that is, additional ODE solver runs, and thus has a minimal computational cost.
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Figure 3. (a) CPU time for various step values hk and Runge–Kutta solver for orders p = 1 (black), p = 2
(green), and p = 4 (blue), relative to 10,000 iterations of the MCMC increasing with order, and exponentially
increasing with the step size. (b) Posterior distribution of λ for RK4 solver, p = 4, for step sizes h = 0.01
(blue histogram) and h = 0.05 (green histogram) and exact posterior (black density). 10,000 iterations of the
MCMC took 17 minutes for h = 0.01 and 2 minutes for h = 0.05; a 90% reduction in CPU time was obtained
with no noticeable difference in the resulting posterior distribution.

•As predicted, the Euler scheme has a linear approximation regime to the correct marginal.
To have any substantial savings in CPU time without compromising posterior inference pre-
cision, we would need to have a very small step size; i.e., there is no “flat part” in order
to take considerable larger step sizes. On the contrary, the RK2 solver, and especially the
classical RK4 solver, indeed have a clear flat section where a nearly perfect estimation has
been reached. This allows for choosing a much larger step size, meaning a far coarser ODE
numerical solver that still makes basically no difference in the resulting inference. This result
may be seen in the resulting posterior distributions in Figures 3(b) and 4(c) comparing a very
fine solver step size vs. a much larger one, reaching basically the same posterior while utilizing
nearly 90% less CPU time.
• For the RK4 solver, we perform a linear regression using the estimated P̂ hkY (y) with

hk = 0.2, 0.1, 0.05, 0.025 for σ = 1 and hk = 0.8, 0.6, 0.4, 0.2, 0.1, 0.05 for σ = 30. Using
the formula given in Theorem 2, we deduce an estimation (projection) of the exact marginal
likelihood P̂Y(y), which has to be compared to the true value PY(y) (obtained using the exact
solution of the ODE and a numerical integration). The results are given in Table 1.
• We believe that an important message is that, for the RK4 solver, as soon as h is lower

than some threshold (we took 0.05 for σ = 1 and 0.1 for σ = 30), the BF P
hk(2)
Y (y)/PY(y) is

greater than 0.99, making the models indistinguishable on the Jeffreys scale (Jeffreys (1961,
p. 432)) and leading to nearly identical posterior distributions (see Figures 3(b) and 4(c)) for
λ. However, the computational time required to estimate the parameters using the smallest h
explodes (see Figures 3(a) and 4(b)) from 2 minutes for h = 0.05 to 17 minutes for h = 0.01,
for σ = 1, and from 2.5 minutes for h = 0.1 to 36 minutes for h = 0.000625, for σ = 30.
Moreover, for σ = 1 and for step size h = 0.02, the BF P hY(y)/PY(y) is only 0.61 for the RK2
but already 0.98 for the RK4 solver; see Figure 2.
• Note that the ranges of considered values for hk are different for σ = 1 and σ = 30 (the
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Figure 4. Study on synthetic data for the logistic growth with σ = 30. (a) Marginal Ph
Y(y) for various step

sizes, both exact (circles, using numerical integration) and estimated using the MCMC sample (triangles). We
use a Runge–Kutta solver of order 4 (classical RK4, blue) only. The horizontal line (red) is the true marginal
PY(y) calculated using numerical integration on the analytic solution. Dashed lines indicate the regression for
estimated values for P̂h

Y(y) = a + bhp for the order p = 4. (b) Corresponding CPU time, relative to 10,000
iterations of the MCMC. (c) Posterior distribution of λ for the RK4 solver, p = 4, for step sizes and h = 0.00625
(blue histogram), h = 0.1 (green histogram), and exact posterior (black density). The former takes 36 minutes
and the latter 2.5.

latter is one order of magnitude larger than the former). This has to be linked to the remark
we have made above: the error induced by the numerical integration of the ODE should not
only be considered by itself, but also in light of the observation noise. When σ = 30, the step
size h∗ such that for any h ≤ h∗ all the models Mh are equivalent on the Jeffreys scale is
much higher, involving even larger computational time savings.
• Choosing a numerical solver with global error 4 or more (RK4, Adams type, etc.) will

lead to a BF that is practically 1, within a range of step sizes h, due to the flat region in the
polynomial a+ bhp; see Figure 2. This region depends not only on the solver, but also on the
model and observation error variance. However, the solver order ensures that such a range
exists. This then translates to being able to choose a bigger h, within that flat step size range,
that will lead to virtually the same posterior distributions than using a far smaller step size,
since the BF is basically 1 (see Figures 2, 4(a), and 6).
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Table 1
Comparison of exact and estimated marginals for the Runge–Kutta method of order 4.

σ PY(y) P̂Y(y)

1 1.854 · 10−18 1.862 · 10−18

30 1.638 · 10−60 1.699 · 10−60

5.2. A diabetes minimal model. We now illustrate our results on a real data set and a
more complex model for an oral glucose tolerance test (OGTT). After briefly describing the
experiment and the model, we present our results.

An OGTT is performed for diagnosis of diabetes, metabolic syndrome, and other condi-
tions. After a night’s sleep, fasting patients are measured for blood glucose and asked to drink
a sugar concentrate. Blood glucose is then measured over two and sometimes three hours,
depending on local practices. We are developing a minimal model for blood glucose-insulin
interaction based on a two-compartment model: one simple transfer compartment of glucose
in the digestive system, and one more complex compartment for blood glucose and interac-
tions with insulin and other glucose restitution mechanisms. Here we present this model to
show our methodology estimating one parameter only (namely, the insulin sensitivity). Since
there is only one parameter involved we are able to find the marginal P hY(Y) by numerical
integration, for comparison purposes.

Let G(t) be the patient blood glucose level at time t in mg/dL. Let I(t) be blood insulin
level at time t and L(t) the “glucagon” levels, to promote liver glycogen glucose production, in
arbitrary units. Let D(t) be the digestive system “glucose level”; we take it as a compartment
in which glucose is first stored (e.g., stomach and digestive tract) and in turn delivered into
the blood stream (we state D(t) in the same units as for G(t), and therefore the mean life
parameter θ2 in (5.5) is the same as the one used in (5.2) below). Let also Gb be the glucose
baseline (= 80 mg/dL, fixed). Our model is described by the following system of ODEs:

dG

dt
= (L− I)G+

D

θ2
,(5.2)

dI

dt
= θ0

(
G

Gb
− 1

)+

− I

a
,(5.3)

dL

dt
= θ1

(
1− G

Gb

)+

− L

b
,(5.4)

dD

dt
= −D

θ2
,(5.5)

where (x)+ means the positive part of x, i.e., (x)+ = x1(x > 0).
A brief explanation of the model follows. When glucose goes above the normal threshold

Gb, insulin is produced, i.e., its derivative increases; see (5.3). This, in turn, acts on blood
glucose to decrease its concentration; a mass-action-type term is introduced in (5.2) to decrease
the derivative of G. L is an abstract term related to the glucose recovery system. When
glucose G(t) goes below the normal threshold (Gb, which we set to 80), L increases (see (5.4))
to increase the derivative of G(t) (thus eventually increasing the glucose); see (5.2). Finally,



BAYESIAN ANALYSIS OF ODEs AND BAYES FACTORS 845

0 1 2 3 4
hr

0

50

100

150

200

250

300

G
lu
c
o
s
e
 (
m
g
/d
L
)

Figure 5. OGTT test performed on an obese male adult, with glucose measurements taken every 30 minutes
up to 2 hours (dots). Note the oscillating nature of the data, typically indicating a not well-controlled insulin-
glucose system. The MAP model is shown in red, along with draws from the posterior predictive distribution
shown in the shaded areas.

D(t) represents the glucose in the digestive compartment that will be transferred to the blood
stream; see (5.5) and (5.2). We analyze data from an OGTT conducted in an obese male adult
patient with a suspected metabolic syndrome condition; the corresponding data are plotted
in Figure 5. All parameters are positive.

The principal aim in OGTT studies is the patient’s insulin sensitivity, which in our model
is θ0, and this is the parameter to be inferred from the data. By experimenting with several
data sets, reasonable behavior is obtained with θ1 = 26.6. The insulin and glucagon clearance
rates are set to a = 1, b = 2, while the glucose transfer mean life θ2 = 0.2h (Anderwald et al.
(2011)). The initial value G(0) is set to d0, the recorded fasting glucose. Homeostasis is
assumed after a night’s sleep, and therefore we set I(0) = 0 and L(0) = 0. The 75gr sugar
concentrate translates into a maximum of D(0) = 250mgdL , which is transferred into G(t). This
is an unusual experimental data set in which glucose was measured every 30 minutes up to
2 hours. Commonly, glucose is measured at arrival, at the hour, and at 2 hours only.

Our Bayesian inference is performed as follows. We have observations d1, d2, . . . , dn for

di = G(ti) + ei, where ei ∼ N(0, σ2),

and G(0) = d0 the initial condition; we fix the measurement error to σ = 5 (the observation
functional is therefore f(X) = X1). From this a likelihood is constructed. The error here is
due to the glucose measurement process and added error to account for model discrepancies,
and a σ = 5 produces reasonable fit in most cases. Since θ0 is positive, a Gamma prior
distribution is assumed for parameter θ0, with shape parameter = 5 and rate = 2/5, thus
with mean = 2, apparently the value for a normal person (established from a small data set
of OGTTs performed on healthy individuals). Using an RK4 solver with varying step size, we
perform an MCMC for these parameters using the t-walk (Christen and Fox (2010)).
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Figure 6. BFs study for the diabetes minimal model using an order 4 Runge–Kutta solver. (a) The
horizontal line (red) is the numerical integration approximation of Ph

Y(Y) using step size 0.25 · 2−7 (smallest
step size used), while the triangles are Monte Carlo estimates performed as in (4.2); these seem to slightly
underestimate the former. The dashed line (blue) is a regression model a+ bh4 estimate using step sizes from
0.25 · 2−1 to 0.25 · 2−4 only. (b) CPU time for various solver step sizes considering 10,000 iterations of the
MCMC. (c) Comparison of the resulting posterior with step size 0.25 ·2−7 (blue histogram) and 0.25 ·2−3 (green
histogram) showing basically no difference and resulting in a near 90% reduction in CPU evaluation time.

To make the solver evaluation time steps (in hours) include the observation times, we
take a rough time step of 15 minutes (= 0.25h) and divide it into finer time steps defined
as h(k) = 0.25 · 2−kh. Our experiments included k = 0, . . . , 7, as seen in Figure 6(a). We
only use an RK4 solver, resulting in the 4th grade polynomial regression and a flat section
already at h(3) = 0.25 · 2−3h = 1.875min. If compared with our minimum time step of
h(7) = 0.25 · 2−7h = 7s, the resulting CPU time of the MCMC is more than 90% larger.
However, the resulting posterior distributions for h(3) and h(7) are basically identical (see

Figure 6(c)). The estimated marginal is P h
(3)

Y (y) ≈ 3 · 10−14, calculated using the MCMC

samples and (4.2), while P h
(7)

Y (y) ≈ 3.2 · 10−14, calculated using numerical integration (red
line in Figure 6(a)).
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6. Discussion. We build upon some theoretical aspects of the Bayesian analysis of ODE
systems. As opposed to more standard (Bayesian) statistical analyses, inverse problems
present the added difficulty that the regressor function (i.e., the forward map) is not ana-
lytically tractable and numerical approximations need to be used. In general, the replacement
of the theoretical (unavailable) solution of the differential system by a numerical approxima-
tion is ignored, and the solver is used as a black box. Recently, however, research has been
directed at trying to quantify the consequences of such an approximation, commonly by com-
paring expected values of the resulting posterior distributions, like the exact vs. the numerical
posterior means.

In this paper we adopt a different approach, basing our comparison on the use of BFs,
which is the natural tool for comparing models in a Bayesian context. There are still some
particular issues to be solved when applying our results to general inverse problems like esti-
mating the marginals in a multidimensional parameter problem and analyzing stiff problems
where a multistep method would need to be used. However, we may highlight the following
remarks.

First, we contribute to the intuitive idea that the ODE solver approximation error should
be put in the perspective of the observational error. BFs, and the Bayesian model comparison
machinery, may be used as an appropriate measure of solver accuracy, precisely from the
perspective of the observational error considered in the model. Theorem 2 establishes a
consistency between the ODE solver order and the BF of the exact vs. the numerical posterior
distribution. As a consequence, the numerical solver used may be viewed from this perspective
and not solely as a black box number crunching routine. As far as the main aim is to
make inference on parameters, there is no need to use the highest precision if the data are
contaminated by a nonnegligible quantity of noise. In a domain where the computational time
is important, we have proved that considerable CPU time savings may be obtained only by
using a reasonable step size in the solver.

Second, we show how the BF may be approximated even in this scenario where the exact
model is not available. This result is of particular interest, since it allows us to compare the
accuracy of our approximate posterior without being able to work on the theoretical model
directly. The computation of marginal likelihoods is an important topic in the Bayesian
literature. In this paper, we propose the use of the Gelfand and Dey estimator, which has the
great advantage of not requiring any additional numerical evaluation of the differential system
after the MCMC was performed. However, we are aware that the Gelfand and Dey estimator
may become highly unstable as the dimension of the parameters increases. The use of a KDE
weighting function in (4.2) may help to stabilize the estimate but is not a universal solution.
If the dimension of the parameters increases, other strategies should be considered (Valpine
(2008)), still keeping in mind that any additional numerical evaluations of the ODE system
may have considerable computational costs. Our results would also need to be stated for
multiple dimension observation functions f ; we leave these considerations for future research.
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for example, in section 5.2. We also thank the two reviewers and the AE comments and
corrections, which greatly improved the presentation of the paper.
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