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Introduction

This document is an overview of my research work. My PhD thesis took place in the field of
statistics with an application to neurosciences. More precisely, I developed statistical model for
hemodynamic response from functional magnetic resonance imaging (fMRI). In order to consider
physiological dynamical models (as opposed to a non-parametric modeling of the hemodynamic
response), I focused on statistical models relying on a system of differential equations with no
explicit solution. To estimate the parameters of such models, I resorted to a stochastic version
of the well-known Expectation Maximization (EM) algorithm, coupled to Monte Carlo Markov
Chain (MCMC) algorithms (SAEM-MCMC algorithm).
After my PhD, as a Maître de Conférences at University Paris-Dauphine, I expanded my expe-
rience and knowledge in stochastic algorithms –essentially in a Bayesian inference context– to
various fields of applications. Thus far, my research production mainly divides into three topics:

• Statistical inference for models defined by (stochastic) differential equations,

• Parametric and Non-parametric Bayesian inference for counting processes,

• Statistical inference for network data with application to sociology and ecology.

My various contributions to these three domains will be described hereafter, in dedicated chapters
1, 2 and 3. Note that other works, not directly linked to these three topics, are not evoked here
but appear in the publications list.

Chapter 1 deals with models defined by ordinary or stochastic differential equations systems
(ODEs and SDEs). Complex biological phenomena such as brain activity, drug action on bod-
ies or glucose regulation system, etc., are usually modeled by complex systems of differential
equations, dynamically linking the various observed or non-observed biological entities at stake.
Except in very rare cases, it is impossible to exhibit an explicit solution of the differential sys-
tem. Consequently, in practice, the exact solution of the system is approximated by a numerical
scheme (Euler or Runge-Kutta being the most famous) and the statistical inference (estimation
or model selection...) is performed using this approximation. In general, the replacement of the
true solution by its approximation is ignored when studying the properties of the parameters
estimation.
In a first work with Adeline Samson during my PhD thesis [A2], we consider the maximum
likelihood estimation of models whose regression function is the non-explicit solution of an ODE,
depending on non-observed latent variables. In this context, we maximize the likelihood using
the SAEM-MCMC algorithm. Besides, we bound the error on the estimations introduced by the
use of an approximate solution to the dynamical system. The obtained bound on the error is a
function of the precision of the ODE numerical approximation scheme.
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In a second work with Marcos Capistran and Andres J. Christen [A12] (during my two years stay
in Mexico), we consider a similar problem but in a Bayesian context. In this work, we propose
to control the error –still introduced by the numerical approximation scheme to solve the ODE–
on the posterior distributions of the parameters. We also study the gain of precision when using
a better approximation scheme in terms of Bayes Factor.

Ordinary differential system often fails to model completely the biological phenomena at stake. In
order to take into account more variability in the process, random components may be introduced
in the differential system, thus resulting into a system of stochastic differential equations (SDEs).
These SDEs generally have no explicit solutions, and once again, a numerical approximation
scheme is used to approximate the solution. In a second work with Adeline Samson during my
PhD thesis [A3], we extend our work on models defined by ODEs to those defined by SDEs.
More precisely, approximating the SDE solution but the Euler-Maruyama scheme, we develop an
adapted SAEM-MCMC algorithm to maximize the likelihood. We prove the convergence of this
algorithm and bound the error introduced by the Euler-Maruyama scheme on the parameters
estimations.
In a joint work with Adeline Samson and Jean-Louis Foulley [A5], we consider the Bayesian
analysis of growth curves using mixed models defined by stochastic differential equations. In
this particular case, the solution of the SDE is explicit, and we illustrate the practical interest
of SDEs over ODEs.
When the SDE has an explicit solution but impossible to simulate conditionally to the obser-
vations, we propose to take advantage of the new MCMC algorithms adapted to the filtering
context (namely the Particle MCMC algorithm) and to combine them with the SAEM algo-
rithm. This new method (a joint work with Adeline Samson [A9]) is presented in section 2.2.2
of Chapter 1.

Finally, I present my last project on models defined by SDEs. In a joint work with Julien Chiquet,
Marie-Pierre Etienne and Adeline Samson [P5], we focus on SDE models for movement ecology
(i.e. modeling a animals trajectories). We aim at identifying –from the observed trajectories–
several types of activities (move from one point to an other, hunt...). In this particular context,
we resort to change-point detection tools, associated to regularization methods.

Chapter 2 introduces my various works on counting processes.

My first work [A11] (joint work with Judith Rousseau) on counting processes is motivated by
an application in reliability. More precisely, the aim is to model the failure and replacement
of components of an electrical network. The model we propose is a counting process with
an endogenous evolution of its intensity process. Inference methods for such processes exist
when the trajectories are continuously fully observed. In this work, we deal with the case of
a partially observed process: we assume that we observe the breakdowns instants but not the
types of the breakdowns. Moreover, we consider the case where the initial state of the process
at the beginning of the observation period is unknown. The Bayesian inference being strongly
influenced by this quantity, we propose a sensible prior distribution on the initial state, using the
probabilistic properties of the process. We prove the parameters identifiability and we illustrate
the performances of our methodology on a large simulation study.

The process studied in this first paper belongs to the family of counting processes with multi-
plicative intensity. In this particular case, the intensity has a parametric form. In two other
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papers (joint work with Judith Rousseau, Vincent Rivoirard and Catia Scricciolo [A14] [A13])
we consider the Bayesian non-parametric estimation of intensity function for Aalen Multiplica-
tive Intensities. These two papers include two main parts, a theoretical one and a computational
one. From a theoretical point of view, we focus on the concentration properties of the posterior
distributions in the non-parametric framework. [A11] is dedicated to the multiplicatives Aalen
processes. In [A14], we concentrate our efforts on the posterior concentration in the case of Em-
pirical Byes procedure, namely when the prior distribution is data-dependent. Aalen processes
are a special model from the ones studied in this paper. From a computational point of view, we
enhance the papers with simulations studies. The non-parametric context requires the design of
special sampling algorithms.

Finally, the last section Chapter 2 presents our last collaboration with Judith Rousseau and
Vincent Rivoirard on Hawkes processes. Multivariate Hawkes processes are dependent counting
processes, where the probability of occurrence of an event on a given process depends on the past
of all the processes. They are used in neurosciences, to model the dependence between neurones.
The dependence is written thanks to a linear filter. In our work, we consider the non-parametric
estimation of the intensity functions, both from a theoretical and algorithmic point of view.

Chapter 3 gathers my works on the modeling of (social) networks. This topic is the object
of a long time collaboration with Avner Bar-Hen and Pierre Barbillon. The two first papers
[A15] [A16] are motivated by social sciences and are written with Emmanuel Lazega. Our
last and our future works take place in the ecology (or eco-sociology) field. The inference of the
probabilistic models involved in these papers are challenging from a computational point of view.
This statement led to a methodological paper with Stéphane Robin [S1].

Modeling relationships between individuals is a classical question in social sciences and clustering
individuals according to the observed patterns of interactions allows us to uncover a latent
structure in the data. The stochastic block model is a popular approach for grouping individuals
with respect to their social behavior. When several relationships of various types can occur
jointly between individuals, the data are represented by multiplex networks where more than
one edge can exist between the nodes. In [A15] and [A16], we extend stochastic block models
to multiplex networks to obtain a clustering based on more than one kind of relation-ships. We
propose to estimate the parameters – such as the marginal probabilities of assignment to groups
(blocks) and the matrix of probabilities of connections between groups– through a variational
Expectation Maximization procedure. The number of groups is chosen by maximizing a penalized
likelihood criterion. This methodology is applied to a network of French cancer researchers.
Stochastic block models include latent random variables, making their likelihood intractable.
In particular, processing large networks is computationally challenging. When talking about
Bayesian inference, standard stochastic algorithms (such as MCMC or population Monte Carlo
algorithms) reach their limit. To tackle this issue, deterministic approximations of the posterior
distribution have been proposed in the literature (among them Variational Bayes is well suited
to SBM and LBM). However, there is no theoretical guaranty. Moreover, it can be illustrated on
examples, that such algorithms can underestimate the posterior variance. In a joint work with
S. Robin [S1], we propose an algorithm taking advantage of the last development in Sequential
Monte Carlo algorithms and deterministic approximations of the posterior distribution.

My most recent works are issued from ecological problematics. Aiming at inscribing my work
in an ecological framework, I started working with W. Dattilo (ecologist at INECOL, Mexique)
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on multipartite ecological networks. In a few words, a high number of interaction types between
plants and animal species co-exist within the natural environment. Among them, we can think
about mutualistic plants/animals interactions such as herbivory, protection of plants by ants,
pollination, or seed dispersal by birds. These various interactions play a key role in structuring
biodiversity. In the recent years, network tools have been intensively used to understand the
structure of the ecological interaction networks. However, in most of the published papers, each
type of interaction is considered individually, ignoring the other interactions. Few works have
considered the joint study of several interactions. Among the various tools dedicated to the
study of bipartite graph, Latent Blocks Models (LBM) provide a probabilistic framework for
the simultaneous clustering of rows and columns of a matrix. In our last joint work with Pierre
Barbillon and Avner Bar-Hen [A9], we consider the extension of LBM to the case of multipartite
graphes. We develop an adapted estimation algorithm and provide a model selection criterion.

From a general point of view, I am now interested in the statistical inference of complex network
datasets. In a few words, I aim at clustering entities from the observation of several non-
independent networks. Such models derive from ecological or sociological concrete questions.
These perspectives are described at the end of Chapter 3

My research perspectives with respect to the three topics of this manuscript are given at the end
of each chapter.
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Introduction (version française)

Ce document est un résumé de mes travaux de recherche. Ma thèse de doctorat s’inscrivait dans
le champ de la statistique avec une application principale en neurosciences. Plus précisément, je
me suis intéressée à la modélisation et à l’estimation de la réponse cérébrale hémodynamique à
partir de données d’imagerie par résonance magnétique fonctionnelle (IRMf). Afin de prendre
en compte un modèle physiologique de réponse hémodynamique (par opposition à une modélisa-
tion non-paramétrique), j’ai orienté mon travail vers les modèles statistiques définis à partir de
systèmes d’équations différentielles sans solution explicite. Les paramètres de ces modèles sont
estimés par une version stochastique de lalgorithme Expectation Maximization (EM) couplée
avec des algorithmes de Monte Carlo par Chaîne de Markov (MCMC) (SAEM-MCMC).
Après mon doctorat, en tant que Maître de Conférences à l’Université Paris-Dauphine, j’ai enrichi
mon expérience dans le domaine des algorithmes stochastiques (en particulier dans le contexte
de l’inférence bayésienne) dans le cadre de domaines d’applications très variés. À ce stade, mes
travaux se divisent principalement en trois thèmes :

• Inférence statistiques pour des modèles définis par équations différentielles (ordinaires ou
stochastiques),

• Inférence bayésienne paramétrique et non paramétrique pour quelques processus de comp-
tage.

• Inférence statistique de données de réseaux avec application en sociologie et en écologie.

Mes diverses contributions dans ces trois domaines sont décrites dans les Chapitres 1, 2 et 3.
D’autres travaux ne se rattachant pas directement à ces trois thèmes ne sont pas décrits dans ce
manuscrit mais sont référencés dans la liste des publications.

Le chapitre 1 est dédié aux modèles définis par équations différentielles ordinaires (EDO) et
stochastiques (EDS). Les phénomènes biologiques complexes tels que l’activité cérébrale, l’action
de médicaments ou le système de régulation du glucose sont très souvent décrit pas des systèmes
d’équations différentielles, ces systèmes liant dynamiquement les différentes quantités biologiques
observées et non observées. Exception faite de très rares cas, il est en général impossible d’exhiber
une solution explicite du système et la solution est approchée par un schéma d’approximation
numériques (Euler ou Runge-Kutta étant les plus connus). L’inférence statistique est alors faite
sur ce modèle approché. En général, la substitution de la vraie solution par sa version approchée
n’est pas prise en compte dans l’étude des propriétés des estimateurs des paramètres.
Dans mon premier travail de thèse avec Adeline Samson [A2], nous nous sommes intéressées
à l’estimation par maximum de vraisemblance pour des modèles dans lesquels la fonction de
régression est la solution non explicite d’un système d’EDO et dépend de variables aléatoires
latentes. Nous maximisons la vraisemblance par un algorithme du type SAEM-MCMC. De plus,
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nous bornons les erreurs d’estimation dues à l’utilisation d’une solution approchée de l’EDO. La
borne obtenue est une fonction de la précision du schéma de résolution numériques de l’EDO.
Dans un second travail avec Marcos Capistran et Andres J. Christen (durant mon séjour de deux
ans au Mexique) [A12], nous avons considéré un problème similaire, mais dans un cadre bayésien.
Dans ce travail, nous contrôlons l’erreur (toujours introduite par l’utilisation d’une méthode
numérique d’approximation) sur la loi a posteriori des paramètres. Nous nous intéressons aussi
au gain de précision obtenu par l’utilisation d’un meilleur schéma de résolution en termes de
facteurs de Bayes.

En général, les EDO ne permettent par de modéliser de façon satisfaisante les phénomènes
biologiques à l’étude. Afin de prendre en compte une plus grande variabilité dans le processus,
des composantes aléatoires peuvent être introduites dans le système différentiel, aboutissant ainsi
à un système d’équations différentielles stochastiques. Comme précédemment, ces EDS n’ont, en
général, pas de solution explicite et leurs solutions sont approchées par un schéma numérique du
type Euler-Maruyama. Dans notre deuxième travail de thèse en commun avec Adeline Samson
[A3], nous avons étendu nos résultats sur les modèles définis par EDO aux modèles définis
par EDS. Plus précisément, après avoir approché la solution de l’EDS par un schéma d’Euler-
Maruyama, nous maximisons la vraisemblance par un algorithme SAEM-MCMC. Nous étudions
la convergence de l’algorithme et bornons l’erreur sur les paramètres d’estimations en fonction
de l’erreur induite par l’utilisation du schéma d’Euler-Maruyama.
Dans un travail en collaboration avec Adeline Samson et Jean-Louis Foulley [A5], nous nous
intéressons à l’analyse bayésienne de courbes de croissances, modélisées par un modèle d’EDS.
Dans ce cas particulier, la solution de l’EDS est explicite et nous mettons en évidence l’intérêt
de l’EDS par rapport à l’EDO.
Dans [A9], travail en collaboration avec Adeline Samson, nous nous intéressons au cas où l’EDS
a une solution explicite qui ne peut être facilement simulée conditionnellement aux observations.
Nous proposons alors d’avoir recours aux algorithmes MCMC spécialement construits pour des
contextes de filtrage (l’algorithme MCMC particulaire) et de les combiner avec l’algorithme
SAEM.

Le chapitre 1 se clôt sur mon dernier projet de recherche faisant intervenir des EDS. Dans
ce projet, en collaboration avec Julien Chiquet, Marie-Pierre Etienne et Adeline Samson [P5],
nous nous intéressons aux modèles spatio-temporels définis par EDS et utilisés en écologie pour
modéliser les déplacements d’animaux. Dans ce cadre, nous cherchons à identifier différentes
activités des animaux (chasse, déplacement d’un point à un autre...) à partir de l’observation
des trajectoires d’animaux. Nous combinons des outils de détection de rupture avec des méthodes
de régularisation.

Le chapitre 2 regroupe mes travaux sur les processus de comptage.

Mon premier travail dans ce domaine (co-écrit avec Judith Rousseau) a été motivé par une appli-
cation en fiabilité. Nous modélisons l’évolution d’un réseau électrique, c’est-à-dire la succession
des occurrences de pannes et réparations. Le modèle que nous proposons est un processus de
comptage dont le processus d’intensité est à évolution endogène. L’estimation bayésienne d’un
tel processus est immédiate lorsque le processus est observé de façon continue. Dans notre appli-
cation, nous n’avons accès qu’à une observation partielle du phénomène : plus précisément, nous
connaissons les instants de pannes mais pas le type de réparation. De plus, l’état du système
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n’est pas connu au début de la période d’observation. L’inférence bayésienne étant très forte-
ment influencée par ce paramètre, nous construisons une loi a priori informative, issue d’une étude
théorique fine du processus. Nous montrons l’identifiabilité du modèle et illustrons l’efficacité de
notre procédure sur des données simulées.

Le processus étudié dans ce premier article appartient à la famille des processus de comptage à
intensité multiplicative. Dans ce premier article, nous avions considéré une forme paramétrique
de l’intensité du processus. Dans les deux articles suivants [A14] [A13] (collaborations avec
Judith Rousseau, Vincent Rivoirard and Catia Scricciolo) nous nous intéressons à l’estimation
bayésienne non-paramétrique de fonctions d’intensité pour les processus de Aalen multiplicat-
ifs. Ces articles comportent deux volets, un théorique et un numérique. D’un point de vue
théorique, nous nous intéressons aux propriétés de concentration des lois a posteriori dans un
cadre d’inférence bayésienne non-paramétrique. Dans [A13], nous traitons le cas des processus de
Aalen. [A14] s’intéresse à la convergence de la loi a posteriori des estimateurs non-paramétriques
dans le cas particulier où la loi a priori est dépendante des observations (bayésien empirique). Les
processus de Aalen sont un des modèles étudiés dans ce article. D’un point de vue numérique,
chaque article est doté d’une étude sur données simulées. L’inférence non-paramétrique bayési-
enne des processus que nous considérons dans ces articles requiert la construction d’algorithmes
ad hoc d’échantillonnage de la loi a posteriori.

Enfin, la dernière partie du chapitre 2 décrit notre dernière collaboration avec Judith Rousseau et
Vincent Rivoirard sur les processus de Hawkes multivariés. Ces processus sont classiquement util-
isés en neurosciences pour modéliser la dépendance entre potentiels d’actions neuronaux. Ce sont
des processus de comptage pour lesquels le processus d’intensité d’un processus donné dépend
de la réalisation passée de tous les autres processus. Cette dépendance s’écrit au travers d’un
filtre linéaire. Nous nous intéressons à l’estimation bayésienne non-paramétrique de fonctions
d’interactions à la fois d’un point de vue théorique et algorithmique.

Mes travaux sur l’analyse de données de réseaux sont décrits dans le chapitre 3. Ce sujet est
au cœur d’une collaboration de longue date avec Avner Bar-Hen and Pierre Barbillon. Les deux
premiers articles [A15] [A16] ont été motivés par une application en sciences sociales et ont été
écrits avec Emmanuel Lazega. Notre dernier travail [P6] et nos perspectives sont motivés par la
modélisation de réseaux écologiques ou socio-écologiques. L’inférence des modèles probabilistes
que nous utilisons est un défi computationnel, ce qui m’a conduit à un travail plus méthodologique
avec Stéphane Robin [S1].

Modéliser les relations entre individus est une problématique classique en sciences sociales et
regrouper les individus en fonction des motifs observés dans le réseau permet de comprendre la
topologie du réseau. Le modèle à blocs stochastiques est une approche répandue pour regrouper
les individus partageant le même comportement d’interaction.
Lorsque plusieurs types de relations peuvent coexister entre deux individus, on représente les
observations par un réseau multiplexe. Dans [A15] and [A16], nous étendons le modèle à blocs
stochastiques aux réseaux multiplexes de façon à obtenir une classification des individus tenant
compte de leur comportements social vis-à-vis de plusieurs types de relations. Nous estimons
les paramètres du modèle par une version variationnelle de l’algorithme EM, le nombre de blocs
étant choisi par un critère de vraisemblance pénalisée. Ces deux articles sont motivés par la
modélisation de relations de conseils entre chercheurs en cancérologie.
D’un point de vue méthodologique, les modèles à blocs stochastiques reposent sur l’introduction
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des variables latentes, rendant leur vraisemblance incalculable de façon explicite dès que la taille
des réseaux augmente. Lorsque l’on s’intéresse à l’inférence bayésienne, les algorithmes clas-
siques d’échantillonnage de la loi a posteriori (MCMC ou population Monte Carlo) atteignent
leurs limites sur ce type de modèle. Il leur est donc préféré des approximations déterministes de
la loi a posteriori du type approximations variationnelles. Cependant, les propriétés théoriques
de ces approximations variationnelles ne sont pas garanties; il est même possible en pratique de
montrer que les variances a posteriori sont parfois sous-évaluées. Dans un travail avec S. Robin
[S1], nous proposons une méthodologie permettant de combiner avantageusement les approxima-
tions déterministes de la loi a posteriori avec les derniers développements dans le domaine des
algorithmes de Monte Carlo séquentiels.

Mes travaux récents découlent de problématiques écologiques. Cherchant à orienter mes travaux
vers des thématiques environnementales, j’ai initié une collaboration avec Wesley Dattilo (éco-
logue, INECOL, Mexique) sur le réseaux multipartites en écologie. En quelques mots, de mul-
tiples types d’interactions peuvent coexister dans la nature entre plantes et espèces animales.
Parmi ces interactions, nous pouvons citer les interactions mutualistes entre plantes et pollinisa-
teurs, plantes et fourmis protectrices ou oiseaux dispersant les graines. Ces divers interactions
jouent un rôle clé dans la structuration de la biodiversité. Au cours des dernières années, les
outils d’analyse de réseaux ont été intensivement utilisés pour comprendre la structure de ces
interactions écologiques. Cependant, en général, chaque type d’interaction est étudié de façon
indépendante, peu de articles considèrent l’étude jointe des différents réseaux. Parmi les outils
classiquement utilisés pour inférer la topologie des graphes bipartites, on trouve les modèles à
blocs latents, qui permettent une classification simultanée des lignes et des colonnes (respective-
ment plantes et animaux dans notre cas). Dans notre travail en cours avec Pierre Barbillon,
Avner Bar-Hen et Wesley Dattilo, nous étendons les outils pour graphes bipartites aux graphes
multipartites. Ce travail est détaillé dans la section 4.1 du chapitre 3.
De façon plus large, je m’intéresse à l’inférence de données de réseaux ayant une structure
complexe, en d’autres termes, je cherche à classifier les entités à partir d’une collection de réseaux
dépendants et non à partir d’un unique réseau. L’écologie et la sociologie motivent en grande
partie ces travaux.

Mes perspectives de recherche se rapportant aux trois thèmes traités ici sont décrites à la fin de
chaque chapitre.
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Chapter 1

Statistical inference for some models
defined by differential systems

The modeling of dynamical physiological, ecological or biological processes often involves the use
of complex systems of differential equations. In general, this system has no explicit solution and
has to be approximated by a numerical scheme.

In my works with A. Samson [A2] and with A. J. Christen and M. Capistran [A12], we study the
influence of the approximation of the solution when it comes out to estimate the parameters. The
work with A. Samson assumes that the differential system depends on random latent parameters
and we work in a frequentist paradigm whereas my work with A. J. Christen and M. Capistran
takes place in a Bayesian framework. These two works are described in the following Section 1.

In order to take into account a possible lack of accuracy of the deterministic model, a stochastic
volatility term can be introduced in the ODE, thus resulting into a Stochastic Differential Equa-
tion (SDE). My works dealing with the inference of statistical models involving SDEs [A3] [A5]
[A9] [P5] are described in Section 2.

1 Statistical inference for models defined through ODE [A2] [A12]

Let y = (y1, . . . , yn) be n observations of a complex biological process at discrete times t1, . . . , tn ∈
[t0, T ]. yi ∈ Rq,∀i = 1 . . . n. We consider the following observation model:

yj = H(Xφ(tj)) + εj , εi ∼i.i.d. N (0, σ2Iq) (1.1)

where Xφ is the solution of the following system of ordinary differential equations,

dXφ

dt
= F (Xφ, t, φ); Xφ(t0) = X0. (1.2)

φ ∈ A ⊂ Rd is a vector of unknown parameters and F : Rr × [0, T [×A 7→ Rr is a known function
defining the dynamical system. H : Rr 7→ Rq is the observation function, modeling the fact
that, for instance, we only observe a restricted number of the r components of Xφ or some
combinations of the r components. The observation variance σ2 ∈ S ⊂ R+ is unknown.
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Examples Several examples can be found. See for instance the ones we treated in [A12]:

1. Let X(t) be the size of the tumor to time t. The growth is classically described by the
following differential equation

dX

dt
= λX(t)(K −X(t)), X(0) = X0 (1.3)

with λK being the growth rate and K the carrying capacity e.g. limt→∞X(t) = K and
θ = (K,λ). The size of the tumor is observed with error at times t1, . . . , tn:

yj = Xθ(tj) + εj

and H = id.

2. An other example can be found when modeling the Oral Glucose Tolerance Test (OGTT).
During that test, the individuals ingest a dose of glucose at time t = 0, and the blood glucose
level is monitored at discrete times. The glucose is regulated by the insulin. Let G(t) be
the patient’s blood glucose level at time t, in mg/dL. Let I(t) be blood insulin level at time
t and L(t) “glucagon” level, to promote liver Glycogen glucose production, in arbitrary
units. Let D(t) be the digestive system ‘glucose level’; we take it as a compartment in
which glucose is first stored (eg. stomach and digestive tract) and in turn delivered into
the blood stream. Let also Gb be the glucose base line, (=80 mg/dL, fixed). Andrés
Christen et al. (2016) proposed the following system of ODE’s

dG
dt = (L− I)G+ D

θ2
,

dI
dt = θ0

(
G
Gb
− 1
)+
− I

a ,

dL
dt = θ1

(
1− G

Gb

)+
− L

b ,
dD
dt = −D

θ2
.

(1.4)

We denote X(t) = (G(t), I(t), L(t), D(t)) and only observe the glucose G(t). Let yj be the
blood glucose level at time tj . We set the following observation model:

yj = G(tj) + εj = H(Xφ(tj)) + εj

where H : R4 7→ R with H(x1, x2, x3, x4) = x1.

As soon as (1.2) has no explicit expression –see for instance system (1.4) in the examples– the
regression function of model (1.1) has no explicit expression and a numerical scheme has to be
applied to approximate it. We denote by Xh

φ the approximate solution of (1.2) derived from the
numerical scheme where h is the discretization stepsize of the solver. Any statistical inference is
then performed on an approximate model defined as :

yi = H(Xh
φ(ti)) + εi, εi ∼i.i.d. N (0, σ2Iq) (1.5)

My works [A2] and [A12] focus on the consequences of performing the statistical inference on
the approximate model (1.5) rather than on the true model (1.1). The two works are developed
in different inference frameworks and are described hereafter.
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1.1 Maximum likelihood estimation for incomplete data models defined by
ODE [A2]

In my first joint work with A. Samson [A2], we consider the case where we observe the temporal
trajectories of not one but I individuals. Let yij be the observation of individual i (i = 1 . . . I)
at time tij . Each observation yij is the noisy observation of Xφi solution of the same dynamical
system but depending on individual parameters φi. More precisely,

yij = H(Xφi(tij)) + εij , εij ∼i.i.d. N (0, σ2Iq), (1.6)

where Xφi : R+ 7→ Rq is solution of

dXφi

dt
= F (Xφi , t, φi); Xφi(t0) = X0,i. (1.7)

For such population data, mixed effects models have proved their efficiency to distinguish the
intra and the inter individual variability (Pinheiro and Bates, 2000). In mixed effects models,
the individual parameters (φi) are latent (non-observed) variables such that

φi ∼i.i.d. Nd(µ,Ω) ∀i = 1, . . . , I (1.8)

where (µ,Ω) are the population parameters. In this particular context, θ = (µ,Ω, σ2) are the
parameters of interest. In what follows, (M) refers to the “exact” model defined by equations
(1.6), (1.7) and (1.8).

Remark 1.1. Note that if φi is a positive a parameter or constrained to a bounded interval, the
Gaussian distribution can still be used provided a reparametrisation of φi.

Once again, (1.7) having no explicit expression, Xφi(t) has to be approximated by a numerical
solver. Denoting Xh

φi
the approximated solution, we perform the inference on the following

approximate model:
yij = H(Xh

φi
(tij)) + εij

εij ∼ i.i.d.N (0, σ2Iq),
φi ∼ i.i.dN (µ,Ω)

(1.9)

(1.9) defines the approximate model (Mh).

1.1.1 Maximization of the likelihood by a stochastic version of the EM algorithm

For the sake of simplicity in this manuscript, we consider hereafter that the observations yij are
unidimensional (q = 1) and that H is the identity function. However, all the results have been
proved for a general H and q.

EM algorithm and stochastic version The likelihood of the observations y = (yij)i=1...I,j=1...ni

under the approximate modelMh expresses as

Lh(y; θ) =

∫
`h(y|φ, σ2)p(φ|µ,Ω)dφ, (1.10)

where the latent variables (individual parameters) φ = (φ1 . . . , φI) have been integrated out and

`h(y|φ, σ2) =
I∏
i=1

ni∏
j=1

1√
2πσ2

e
− 1

2σ2

(
yij−Xh

φi
(tij)

)2

p(φ|µ,Ω) =

I∏
i=1

1√
(2π)d det(Ω)

e−
1
2
φtiΩ
−1φi .
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Due to the non-linearity of Xh
φi

(tij) as a function of φi, the “marginal” likelihood Lh(y; θ) has no
explicit expression. When the observations can be enhanced by latent variables, the Expectation-
Maximisation (Dempster et al., 1977) algorithm is a well-known and powerful algorithm to
maximise the likelihood. Taking advantage of the explicit expression of the complete likelihood
(denoted Lcompl

h ):
logLcompl

h (y, φ; θ) = log `h(y|φ, σ2) + log p(φ;µ,Ω),

the EM algorithm is an iterative maximisation method whose (m)-th iteration is decomposed as
follows:

Algorithm 1 (EM).

At iteration (m),

• (Step E) Compute Q(θ|θ(m)) = E[logLcompl
h (y,φ; θ)|y, θ(m)]

• (Step M) Maximise θ(m+1) = arg maxθ∈ΘQ(θ|θ(m))

In model (Mh), step (E) has no closed form. To deal with such situations, Delyon et al. (1999)
introduce a stochastic version (SAEM) of the EM algorithm, evaluating the Q(θ|θ(m)) integral
by a Robbins-Monroe stochastic approximation procedure. More precisely, the E-step is divided
into a simulation step (S-step) of the non-observed data φ(m) with the conditional distribution
ph(φ|y, θ(m)) and a stochastic approximation step (SA-step):

Q(θ|θ(m+1)) = Q(θ|θ(m)) + γm

(
logLcompl

h (y,φ(m); θ(m))−Q(θ|θ(m))
)

where (γm)m≥0 is a sequence of positive numbers decreasing to 0 such that
∑

m γm = ∞ and∑
m γ

2
m <∞. They prove the convergence of this algorithm under general conditions in the case

where Lcompl
h (y,φ; θ) belongs to a regular curved exponential family.

Again, in model (Mh) (1.9), the conditional distribution of φ given the observations y has no
explicit expression and can not be simulated easily. In such cases, Kuhn and Lavielle (2004)
suggest using a Monte Carlo Markov Chain (MCMC) algorithm which consists in generating
a Markov chain with ph(φ|y; θ(m)) as unique stationary distribution at the mth iteration. The
principle of MCMC algorithm is described in Algorithm 3. Assume that Lcompl

h (y,φ; θ) belongs
to the exponential family of distributions, i.e. there exist ψh and νh two functions of θ such that:

Lcompl
h (y,φ; θ) = exp {−Ψh(θ) + 〈Sh(y,φ), νh(θ)〉} ,

where 〈··〉 is the scalar product and Sh(y,φ) is known as the minimal sufficient statistics of the
complete model, taking its value in a subset S of Rm. The SAEM-MCMC algorithm is as follows:

Algorithm 2 (SAEM-MCMC).

At iteration (m),

• (Step S): Generate φ(m) through a few iterations of MCMC algorithm with stationary
distribution ph(φ|y, θ(m))
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• (Step SA): Stochastic approximation of E[Sh(y,φ)|y, θ(m)] by

sm+1 = sm + γm(Sh(y,φ(m))− sm)

• (Step M): Maximisation

θ(m+1) = arg max
θ∈Θ
−Ψh(θ)+ < sm+1, νh(θ) >

Remark 1.2. Note that our modelMh (1.9) is such that its complete likelihood belongs to the
exponential family.

MCMC algorithms MCMC algorithms generate Markov chains whose stationary distribution
is the distribution of interest. In our case, the distribution of interest is ph(φ|y, θ(m)). In this
particular context we resort to the most well-known MCMC, namely the Metropolis-Hastings
algorithm (Robert and Casella, 2005). Assume that we target ph(φ|y; θ), the iterative Metropolis-
Hastings algorithm requires an easily simulable proposal density K and is written as follows:

Algorithm 3 ( Metropolis-Hastings algorithm).

At step r + 1 of the Metropolis-Hastings algorithm, given φ(r):

• Generate a candidate φc from the proposal density K(.|φ(r)).

• Generate U ∼ U([0, 1]). Then,

φ(r+1) =

{
φc if U < α(φ(r),φc),

φ(r) if U > α(φ(r),φc),

where

α(φ(r),φc) = min

{
1,

ph(φc|y; θ)

ph(φ(r)|y; θ)

K(φ(r)|φc)
K(φc|φ(r))

}

= min

{
1,
Lcompl
h (y,φc; θ)p(φc;µ,Ω)

Lcompl
h (y,φ(r); θ)p(φ(r);µ,Ω)

K(φ(r)|φc)
K(φc|φ(r))

}
(1.11)

is the acceptance probability.

The choice of the proposal density K is theoretically arbitrary, although in practice a careful
choice will help the algorithm to move quickly inside the parameters space. The theoretical and
practical properties of such algorithms have been widely studied (see for instance Robert and
Casella, 2005).

1.1.2 Contributions in [A2]

• From a practical point of view, we propose to reduce the computational cost of our procedure
SAEM-MCMC. Indeed, the computation of the acceptance probability α(φ(r),φc) (1.11) requires
the evaluation ofXh,φci

(tij) by the numerical scheme (at each iteration of the Metropolis-Hastings,
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within each iteration of the SAEM), which can be burdensome. For a φc close enough to φ(r), we
propose an extension of the local linearization scheme proposed by Biscay et al. (1996), allowing
to solve only partially the differential equation. A simulation study illustrates the fact that our
new scheme decreases the computational time. The theoretical convergence of the algorithm is
discussed in [A2].

• The convergence of SAEM is proved on the approximate modelMh (1.9) and the distance
between the likelihoods of the two modelsMh (1.9) andM (1.6) is quantified in the following
theorem, leading to a bound on the estimates themselves.

Theorem 1. Assume that equation (1.7) is approximated by a numerical scheme of step size h
such that for a p ∈ N and C > 0:

sup
t∈[t0,T ]

‖Xφ(t)−Xh
φ(t)‖ ≤ Chp

Let (γm) be a sequence of positive numbers decreasing to 0 such that for any m in N, γm ∈ [0, 1],∑∞
m=1 γm =∞ and

∑∞
m=1 γ

2
m <∞.

1. Assuming the sequence (sm)m≥0 takes its values in a compact set of S, the sequence
(θ(m))m≥0 obtained by the SAEM-MCMC algorithm described in Algorithm 2 converges
almost surely towards θh∞ a (local) maximum of the likelihood Lh(y; θ) (equation 1.10).

2. Moreover, under regularity assumptions on H and F , for any σ2
0 > 0, there exists a constant

θ-independent C such that

sup
θ=(β,σ2) |σ2>σ2

0

|Lh(y; θ)− L(y; θ)| ≤ Chp.

3. Finally, regularity assumptions on the likelihood θ 7→ L(y; θ) and the pseudo likelihood
θ 7→ Lh(y; θ) imply results on the maximum likelihood estimates themselves. Let θ∞ be the
argmax of θ 7→ L(y; θ), there exists C′ such that

‖θ∞ − θh,∞‖ ≤ C′hp.

[A2] also presents an application of the algorithm to a dataset simulated using a pharmacoki-
netic model defined by ODEs. The SAEM estimates are compared with those obtained by
the standard estimation software NONMEM, the only available software providing estimates by
maximum likelihood in nonlinear mixed models defined by ODEs at that time. SAEM provides
satisfying estimates and standard errors of the parameters, while NONMEM does not converge
on this simulated example and fails to evaluate the standard errors. The estimation algorithm
implemented in NONMEM is based on the linearization of the regression function. The simula-
tion results presented in [A2]point out the poor ability of this software to estimate the parameters
in nonlinear mixed model defined through ODEs. The algorithm for Non Linear Mixed Effects
Models with ODE is now implemented in MONOLIX.

1.2 Bayesian inference for models defined by ODE [A12]

In [A12], we consider the initial model

yj = H(Xφ(tj)) + εj , εj ∼i.i.d. N (0, σ2Iq) (1.12)
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where we observe a unique individual temporal trajectory and the parameters of interest are
(φ, σ). We work in a Bayesian framework and set a prior distribution on (φ, σ): (φ, σ) ∼ π(·)
and are interested in the posterior distribution of (φ, σ):

p(φ, σ|y) =
`(y|φ, σ)π(φ, σ)

m(y)
∝ `(y|φ, σ)π(φ, σ) (1.13)

where m(y) is the marginal likelihood (where the unknown parameters have been integrated
out). `(y|φ) depends on Xφ(t) solution of the differential system, which has in general no
explicit expression: the inference can not be performed on this “true” model M. As in [A2],
we approximate Xφ(t) by Xh

φ(ti) thanks to a numerical scheme and get an explicit likelihood
`h(y|φ) of the approximate modelMh:

yj = H(Xh
φ(tj)) + εj

εj ∼ i.i.d.N (0, σ2Iq)
(φ, σ) ∼ π(·)

(1.14)

A sample from the posterior distribution ph(φ|y) ∝ `h(y|φ)π(φ) is obtained with a Metropolis-
Hastings algorithm (see Algorithm 3).
In general, the replacement of the theoretical (non-available) solution of the differential system by
a numerical approximation is ignored, the solver being used as a black box. However, recently,
research has been directed at trying to quantify the consequences of such an approximation,
commonly by comparing expected values of the resulting posterior distributions, like the exact
vs the numerical Posterior means. In [A12] we adopt a different approach, basing our comparison
on the use of Bayes Factors (BFs), which is the natural tool for comparing models in a Bayesian
context.

The results we obtain in [A12] are the following ones.
• From the results demonstrated in [A2] we derive the following results.

Theorem 2. Assume that (φ, σ) remains in a compact set A×S, and that the numerical scheme
of step size h is such that {t1, . . . , tn} ⊂ hN and

max
t∈{t1,...,tn}

‖Xφ(t)−Xh
φ(t)‖Rp ≤ Cφhp.

Also assume that the observation function H is differentiable with a bounded derivative. Then
there exists a constant Cy such that for every (φ, σ) and h small enough

|p(φ, σ|y)− ph(φ, σ|y)| ≤ Cyπ(φ, σ)hp.

As a consequence,
DT.V (p(θ, σ|y), ph(θ, σ|y)) ≤ Cyh

p

where DT.V is the total variation distance. Moreover,

‖(φ̂L2
, σ̂L

2
)− (φ̂h,L

2
, σ̂h,L

2
)‖ ≤ hpC ′y

where φ̂L2 is the posterior expectation.

• In the Bayesian paradigm, model selection is performed using the Bayes Factor defined as
follows. Let y be the observed data and let M and Mh be our two models in competition
(defined in (1.12) and (1.14)).
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Consider a prior distribution on the set of the models {M,Mh}, the decision between the
competing modelsM andMh is based on the ratio of the posterior probability for each model,
namely the Bayes Factor (BF)

BM,Mh
=

P (M|y)

P (Mh|y)
=

m(y)

mh(y)

P (M)

P (Mh)
,

where mh(y) and my(y) are the marginal likelihoods of y from modelMh andM, respectively,
defined by

mh(y) =

∫
`h(y|φ, σ)π(φ, σ)dφdσ and m(y) =

∫
`(y|φ, σ)π(φ, σ)dφdσ

Theorem 3. Under the same assumptions as Theorem 2, we get

m(y) = mh(y) +O(hp).

That is, there exists a constant B(y) ∈ R (which does not depend on h) such that

m(y)

mh(y)
' 1 +B(y)hp.

We comment the following regarding the above results. First, as can be noticed in the demonstra-
tion of Theorem 2 in [A12], we contribute to the intuitive idea that the ODE solver approximation
error should be put in the perspective of the observational error σ. As a consequence, the nu-
merical solver used may be viewed in this perspective and not solely as a black box number
crunching routine. As far as the main aim is to make inference on parameters, there is no need
to use to highest precision if the data are contaminated by a non-neglectable quantity of noise.
In a domain where the computational time is important, we prove in [A12] that considerable
CPU time savings may be obtained only by using a reasonable step size in the solver.
Secondly, from Theorem 3, we deduce that the marginal likelihood m(y) of the unavailable
theoretical modelM now may be estimated. Indeed, an obvious method is to compute mhk(y)
for various step sizes {hk, k = 1 . . .K} and fit the simple linear regression mhk(y) = a + bhpk; a
then provides an estimation of m(y). This means that by using a multi-resolution computation
of mhk(y) on various approximate models, we are able to estimate the marginal likelihood of the
true model.
As an example, let us have a look at Figure 1.1 illustrating a study on synthetic data for the
logistic growth (equation 1.3) with σ = 30. The marginal likelihood mh(y) has been computed
for various step sizes, both exact (circles, using numerical integration) and estimated using the
MCMC sample (triangles). The ODE is approached with a Runge-Kutta solver of order 4
(classical RK4, blue). In this particular case, the ODE has an explicit solution thus we can
compare the estimates with the true m(y) (horizontal red line). Following Theorem 3, we also
indicate (dashed line) the regression for estimated values for mh(y) = a + bhp (p = 4). As
expected, the polynomial curve provides a good approximation of the true marginal likelihood
(plot (a) of 1.1). Moreover, we compare the CPU times relative to 10,000 iterations of the MCMC
for the various step sizes (plot (b) of Figure 1.1). The algorithm requires 36 min for h = 0.00625
and and 2.5 minutes for h = 0.1. However, the posterior distributions for parameter λ can not
be distinguished (plot (c) of Figure 1.1)
There are still some particular issues to be solved when applying our results to more realistic
inverse problems like estimating the marginals in a multidimensional parameter problem and
analyzing stiff problems where a multistep method would need to be used.
Note that between my two publications [A2] and [A12] several papers on this topic have been
published. The introduction of Conrad et al. (2017) contains several interesting references.
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(a)

(b) (c)

Figure 1.1 – Study on synthetic data for the Logistic growth with σ = 30. (a) Marginal mh(y) for various
step sizes, both exact (circles, using numerical integration) and estimated using the MCMC sample
(triangles). We use a Runge-Kutta solver of order 4 (classical RK4, blue). The horizontal lines (red)
is the true marginal m(y) calculated using numerical integration on the analytic solution. Dashed lines
indicate the regression for estimated values for mh(y) = a+ bhp for the order p = 4. (b) Corresponding
CPU time, relative to 10,000 iterations of the MCMC. (c) Posterior distribution of λ the for RK4 solver,
p = 4, for step sizes h = 0.00625 and h = 0.1 (histograms; and exact posterior, black density). The
former takes 36 min and the latter 2.5 min.
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2 Inference for statistical models defined by SDEs [A3] [A5] [A8]
[A9] [P5]

As underlined in the previous section, biological or physiological phenomena are often described
by differential systems derived from physiology. In general, the proposed models are deter-
ministic, that is, the observed dynamic is assumed to be driven exclusively by deterministic
mechanisms. However, real biological processes are always exposed to influences that are not
completely understood or not feasible to model explicitly. Ignoring these phenomena in the mod-
eling may affect the estimation of the parameters and the derived conclusions. Therefore there is
an increasing need to extend the deterministic models to models including a stochastic compo-
nent. A natural extension of deterministic differential equations model is a system of stochastic
differential equations (SDEs), where relevant parameters have been modeled as suitable stochas-
tic processes, or stochastic processes have been added to the driving system equations. Note that
with Adeline Samson, we wrote a review paper about the use of Stochastic Differential Equation
in the particular field of Pharmacokinetics-Pharmacodynimics [A8].

In what follows, I will present three papers ([A3], [A5] and [A9]) dealing with non-linear mixed
effects models defined with SDEs. My last work in progress [P5] deals with a different con-
text where the SDE is used to represent ecological trajectories and we aim at performing a
segmentation and classification of the trajectories.

Non linear mixed effects models with SDE Let yij be the observation of individual i
(i = 1 . . . I) at time tij . Each observation yij is the noisy observation of Z(tij , φi)

yij = Z(tij , φi) + εij , εij ∼i.i.d. N (0, σ2), (1.15)

where Z(t, φi) is solution of a stochastic differential equation (SDE) depending on individual
parameters φi:

dZ(t, φi) = F (Z(t, φi), t, φi)dt+ Γ(Z(t, φi), t, φi, γ
2)dBt, Z(t0, φi) = Z0(φi). (1.16)

Adopting the non-linear mixed effects model approach, the individual parameters are distributed
as:

φi ∼i.i.d. Nd(µ,Ω) ∀i = 1, . . . , I. (1.17)

The combination of equations (1.15), (1.16) and (1.17) will be referred as the true model M in
what follows. The parameters of interest are θ = (µ,Ω, σ2, γ2). Taking into account the stochas-
ticity of the underlying process Z = (Z(tij , φi))i=1,...,I,j=1,...,ni , the likelihood of the observations
y with respect to modelM is:

L(y; θ) =

∫
`(y|Z, σ2)p(Z|φ; γ2)p(φ; θ)dZdφ

where:

`(y|Z, σ2) =
I∏
i=1

ni∏
j=1

1√
2πσ2

e−
1

2σ2
(yij−Z(tij ,φi))

2

p(Z|φ, γ2) =
I∏
i=1

J∏
j=1

p(Z(tij , φi)|Z(tij−1, φi); γ
2)

p(φ|µ,Ω) =

I∏
i=1

1√
(2π)d det(Ω)

e−
1
2
φtiΩ
−1φi
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For this model, we propose a Bayesian inference in a joint work with A. Samson and J.-L.
Foulley with application to agronomy [A5]. With A. Samson, we propose a maximum likelihood
estimation ([A3] and [A9]) thanks to the SAEM-MCMC algorithm. Whatever the framework
is, two main difficulties arise.

1. First of all, in general the SDE (1.16) has no explicit solution i.e. their is no closed form
for the transition densities p(Z(tij , φi)|Z(tij−1, φi); γ

2). In this case, the solution has to be
approximated with a numerical scheme. In [A3], we use the Euler-Maruyama scheme.

2. Secondly, the Bayesian inference and the SAEM-MCMC algorithm both require simulating
the latent variables (Z,φ) under the conditional distribution p(Z,φ|y, θ). However, the
dimension of the latent variables becomes problematic and powerful kernels have to be
specially designed.

2.1 Bayesian inference for NLME models defined by SDE [A5]

In [A5], we illustrate the advantage of SDE over ODE on a particular dataset. We focus on the
modeling of chicken growth. Data y are noisy weight measurements of n = 50 chickens at weeks
t =0, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40 after birth.

Statistical model and Bayesian inference Several growth curve function can be found.
Following the previous study of this dataset by Jaffrézic et al. (2006), we chose the Gompertz
nonlinear mixed model with an additive measurement error on the logarithm of the observations:{

log yij = logAi −Bie−Citij + εij , εij ∼i.i.d. N (0, σ2), ∀(i, j)
φi = (logAi, Bi, logCi) ∼i.i.d. N (µ,Ω), ∀i = 1, . . . , n

(1.18)

However, this model prescribes purely increasing curves and fails to capture unexpected variations
of growth rate for some individuals (see Figure 1.2). As a consequence, we modify the ODE
satisfied by the Gompertz function

f(′t) = BCe−Cf(t), f(0) = AeB

into a SDE. Given the heteroscedasticity of the process, the volatility function is set to be equal
to Γ(Zt, φ, γ

2) = γZt, resulting into:

dZt = BCe−CtZtdt+ γZtdWt, Z0 = Ae−B (1.19)

Equation (1.19) implies that the standard error of the random perturbations of the growth rate
is proportional to the weight. This choice of volatility has two main advantages. First, SDE
(1.19) has an explicit solution Zt which is a multiplicative random perturbation of the solution
of the Gompertz model f(t). Secondly, due to the assumption of the non-negativity of A, Zt
is almost surely non-negative, which is a natural constraint to model weight records. Once the
solution of the SDE has been discretized, we get to the following model:

(log yi0, log yi1, . . . , log yini)
′ =

(
log(Ai)−Bi, Zti1 , . . . , Ztini

)′
+ εi,

εi ∼i.i.d. N
(
0, σ2Ini+1

)(
Zti1 , . . . , Ztini

)′
=
(
log(Ai)−Bie−Citi1 , . . . , log(Ai)−Bie−Citini

)′ − γ2 (ti1, . . . , tini)
′ + ηi

ηi ∼i.i.d N
(
0J , γ

2Ti
)
, Ti = (min(tij , tij′))1≤j,j′≤ni

(logAi, Bi, logCi) ∼i.i.d. N (µ,Ω)
(1.20)
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Setting standard prior distributions on (µ,Ω, γ, σ), we sample the posterior distribution using a
Metropolis-Hastings within Gibbs algorithm. Note that in that particular model the conditional
distribution of Zi = (Zij)1≤j≤ni given (φi, θ,yi) is Gaussian with explicit conditional mean and
variance. As detailed in [A5], some individual and population parameters also have explicit
conditional distribution, thus allowing to design an efficient MCMC algorithm.

Numerical experiment [A5] presents a large simulation study to compare the models defined
by ODE and SDE. In particular, we illustrate the fact that using the ODE model for data
simulated with a SDE model leads to biases estimates, not only on the variance terms but also
on the parameters of fixed effects. As a consequence, considering a ODE model instead of a SDE
model can lead to inaccuracy in the estimation of the population parameters. On the contrary,
if the data come from the ODE model and are estimated with SDE model, no lack of accuracy
is detected.
The analysis of the real data set also supplies interesting results. The proposed models (ODE
and SDE) are applied on real data of chicken growth. The estimate of γ2 is strictly positive and
its credibility interval puts the parameter of long way from zero. This means that the dynamical
process that most likely represents the growth is a stochastic process with non-negligible noise.
The diagnostic tools also show a clear improvement from the ODE model to SDE model for the
whole population, both at early and late ages. The reduction in DIC from the ODE to the SDE
models is equal to 393, which clearly indicates the better predictive ability of the SDE model.
Figure 1.2 reports, for four subjects, the observed weights, the ODE prediction, the empirical
mean of the last 1000 simulated trajectories of the SDE (1.20) generated during the Gibbs algo-
rithm, their empirical 95 % confidence limits (from the 2.5th percentile to the 97.5th percentile)
and one simulated trajectory. Subjects 4 and 13 are examples of subjects with no growth slow
down. Both ODE and SDE models satisfactorily fit the observations. Subject 14 has a small ob-
served weight decrease. For subject 1, the weight decrease is more important. For both subjects,
the ODE model fails to capture this phenomenon while the SDE model does. Furthermore, the
SDE model provides different estimates for the individual parameters. For example for subject
1, the individual parameter A1 (adult weight) is estimated at 3.922 kg and 3.484 kg by the
ODE and SDE models, respectively. The use of Bayesian model validation tools validate the
superiority of the SDE model over the ODE model on this dataset (see [A5] for more details).

2.2 Maximum likelihood inference via SAEM-MCMC algorithm

I now present two joint works with A. Samson, dealing with the maximum likelihood estimation
of model defined by equations (1.15), (1.16) and (1.17).

2.2.1 When the SDE has no explicit solution [A3]

In [A3], we consider the case where the transition density p(Z(t, φi)|Z(s, φi), s < t; γ2) has no
closed form. In this case, we propose to approximate the SDE solution with a Euler-Maruyama
scheme, which resorts to approximating the distribution p(Zt+h|Zt, φ, θ) by a Gaussian distri-
bution. This approach is widely used in finance for high-frequency datasets. However, in the
applications we are interested in (pharmacokinetics, agronomics...) the laps time between two
observations tij − tij−1 is too long for the gaussian approximation of p(Z(tij , φi)|Z(tij−1, φi), γ

2)
to be relevant. As a consequence, we have to introduce a finer time grid where the gaussian
approximation will be performed. More precisely, ∀i = 1 . . . I, let (τim)m=0...M be an increasing
sequence such that: τi0 = t0, τiM = tJ , τim − τim−1 = h and ∀j = 1 . . . ni, there exists mij such
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Figure 1.2 – Observations (circles), predictions obtained with the ODE mixed model (long dashed line),
mean SDE prediction (smooth solid line), 95% credibility interval obtained with the SDE mixed model
(dotted line) and one SDE realization (solid line), for subjects 1, 4 13 and 14.

that tij = τmij . Then, the approximate model (Mh) is written as follows:

(Mh)


yij = Z̃hmij (φi) + εij ,

εij ∼i.i.d. N (0, σ2)

Z̃hm(φi) = Z̃hm−1(φi) + h F (Z̃hm−1(φi), τim−1, φi) + Γ(Z̃hm−1(φi), φi, γ
2)
√
hξim

ξim ∼ i.i.dN (0, 1)
φi ∼ N (µ,Ω)

The likelihood of the observations with respect to the approximate model (Mh) Lh(y; θ) –which
can be seen as a pseudo-likelihood now has the expression:

Lh(y; θ) =

∫
`(y|Z̃h, σ2)ph(Z̃h|φ; γ2)p(φ; θ)dZ̃hdφ

where all the terms in the integral have explicit expression.
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We propose to maximize the pseudo likelihood Lh by the SAEM-MCMC algorithm where
(y, Z̃h,φ) are the complete data. Assuming that Lh belongs to the exponential family (see
section 1.1), we implement Algorithm 2 on the approximate modelMh, the latent variables to
be simulated being Z̃h and φ conditionally to y for a given θ.
Designing a MCMC algorithm to sample ph(Z̃h,φ|y, θ) can be tricky since the volume of latent
variables is huge. At each iteration ` of the MCMC algorithm the task is divided into two steps:

1. Propose (Z̃h)c with a kernel K1 and accept (Z̃h)(r) = (Z̃h)c with probability such that
ph(·|φ(r−1),y, θ) is stationary.

2. Propose φc with a kernelK2 and accept φ(r) = φc with probability such that ph(·|(Z̃h)(r),y, θ)
is stationary.

The choice of the transition kernel K1 is crucial to guaranty the theoretical and practical con-
vergence properties of the MCMC algorithm and consequently of the SAEM-MCMC algorithm.
In [A3] we propose two kernels. The first naive kernel is ph((Z̃h)c|φ(r−1), θ); this kernel does not
use the observations y thus leading a low acceptance rate and a slow exploration of the space.
In order to take into account the observations, we propose to sample (Z̃h)c as a Brownian bridge
between the observations. This second kernel allows to reach better convergence properties.
From a theoretical point of view, in the frequentist context [A3] we control the likelihood function
of the approximate model as a function of the step-size h of the Euler-Maruyama scheme.

Theorem 4. Under mild regularity assumptions on F and form assumptions on the volatility
function Γ(Zt, φ, γ

2) there exists Cy such that, for h small enough:

sup
θ=(µ,Ω,σ2,γ2) |γ20<γ2<Γ2

0

|L(y; θ)− Lh(y; θ)| ≤ Cyh

Moreover, the sequence of the estimators (θ(m))m≥1 supplied by the SAEM-MCMC algorithm
implemented on the approximate model Mh converges almost surely toward a (local) maximum
of θ 7→ Lh(y; θ), denoted θh,∞. Besides, under regularity assumptions Lh(y; θ) and L(y; θ) there
exist a constant C ′, independent of θ such that ‖θh,∞ − θ∞‖2 ≤ C ′hp where θ∞ is the maximum
likelihood of the true model (M).

The proof of the theorem relies on the convergence rate of the approximation of the transition
density by the Euler-Maruyama scheme (Bally and Talay, 1996). Note that a similar result is
demonstrated on the posterior distributions in the Bayesian framework in [A5].

In [A3] a simulation study in the context of pharmacokinetics illustrates the convergence prop-
erties of the SAEM-MCMC algorithm. An application on a real dataset also illustrates the
superiority of the SDE over the ODE model.

Remark 2.1. Note that as h decreases, on the one hand the approximation of the SDE’s solution
gets more accurate but on the other hand the volume of non-observed data (the individual param-
eters φi and the latent stochastic process Zhmij at each instant of the grid) increases dramatically.
As a consequence, in practice a compromise has to be found.

2.2.2 Combining SAEM with PMCMC [A9]

In a second work with A. Samson [A9] we propose to improve the simulation of the latent process
Z conditionally to (φ,y) using the recent particular methods proposed by Andrieu et al. (2010).
In [A9] we restrict our study to the case where the transition density p(Z(tij , φi)|Z(tij−1, φi); γ

2)
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has an explicit expression. As seen before, simulating (Z,φ) conditionally to the observations
y is a challenging algorithmic task: MCMC algorithm with naive kernels will lead to poor
convergence properties due to the dimension of the space to be explored. Simulating Z|φ,y; θ
is a filtering task. When this distribution is not explicit, Sequential Monte Carlo methods have
been proposed (Doucet et al., 2001). However, the particle filtering is difficult to combine with
the sampling of the parameters φ. Andrieu et al. (2010) proposed a powerful algorithm namely
the Particle Markov Chain Monte Carlo (PMCMC) combining the strength of MCMC and SMC
algorithms. The PMCMC has the great property to have p(Z|φ,y; θ) as invariant distribution,
whatever the number of particles used at the SMC step is. In [A9], we propose to combine
SAEM with PMCMC to get a more efficient algorithm for the estimation of the parameters of
the model defined by (1.15), (1.16) and (1.17).

Using the convergence properties of PMCMC, we are able to prove the convergence of the SAEM-
PMCMC algorithm. A simulation study performed on the toy example Ornstein-Uhlenbeck
processus highlights the fact that the number of particles has no influence on the quality of the
estimation. Moreover, a simulation study on a Gompertz diffusion (1.19) with heteroscedastic
error proves that SAEM-PMCMC can help to improve the estimation of the volatility parameter
γ2.

3 Conclusion and perspectives

3.1 My contributions in a few words

I have been working on statistical models defined through ODE and SDE since my PhD and
until recently.
On statistical models defined by ODE, my main contribution is the theoretical and practical
study of the influence of the numerical approximation of the dynamical system solution on the
parameters inference (frequentist or Bayesian). Indeed, whereas numerical solvers were classically
used as black box in inference procedures, their influence was not studied. In our work, we
monitored the error induced by their utilization. My work took place in frequentist and Bayesian
frameworks where specific tools can be used to quantify the influence.
SDE are attractive and elegant tools to model biological processes (see for instance our review
paper [A8] in the pharmacology field). As illustrated in [A5] their use can be clearly fruitful in
a practical context. However, they imply methodological and theoretical significant difficulties.
Estimating the parameters of such processes has been widely tackled in financial datasets with
high-frequency data. They have been much less addressed in biology where the data are clearly
not of that type. In my works, I endeavored to develop efficient estimation algorithms and supply
control results when the SDE has no explicit solution and is replaced by a numerical scheme, in
a biological framework.
This field of research is obviously still very active. Recently, Approximate Bayesian Computation
has provided new perspectives and very flexible computational tools have been developed (see
for instance Liepe et al., 2014, to name but a few).
As far as I am concerned, I slowly withdrew from this thematic to focus on the ones described
in the following chapters. However, I still have a research project relying on SDEs and described
here after.
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3.2 Future work: SDE and rupture detection in ecology

I started recently a collaboration with J. Chiquet, M.P. Etienne and A. Samson around a prob-
lematic related to SDEs. Processes driven by stochastic differential equations have recently been
seen as powerful tools to model ecological movements (such as birds, aquatic animals, fishes...).
Movement ecology data typically deals with positions in space over a sequence of discrete points
in time. The position is recorded thanks to Global Position System (GPS) and the acquisition
frequency might vary from one position per day to one position per second depending on the
species and the specificity of the studied movement.
Let (Y0, . . . , Yn) ∈ (R2)n+1 denotes the sequence of relocations times 0 = t0, . . . , tn. Among the
standard movement models, we aim at considering the following ones:

• the Random walk with drift: Yk+1 = Yk+(tk+1−tk)ν(RWD)+Ek+1 withEk
i.i.d∼ N (0,Ψ(RWD)),

• the bi-dimensional Ornstein Ulhenbeck, defined as follows : dYt = B(Xt − µ)dt+ ΛdWt

• or the Continuous time Correlated random walk is defined as an Ornstein Uhlenbeck process
on the velocity in each direction (no correlation between dimension) and the position is
defined as the integral of the velocity. Note that this system has an explicit solution.

Many interesting question in ecology or in fisheries science are addressed through the study
of such GPS data and one of the first step in the analysis of such data requires to identify
homogeneous portion in the trajectory.
Two main class of approaches are used for such an identification: methods based on Hidden
Markov Model (HMM) and methods based on segmentation. HMM based methods assume
that the length of such homogeneous regions exhibits a geometric distribution and uses some
Expectation Maximization approaches that might converge to a local maximum. Those methods
are used for identifying underlying activities associated with those homogeneous regions. On
the other hand, segmentation based approaches don’t request anything regarding the length
of the homogeneous regions but they are not meant to identify underlying activities as every
region exhibits its own specificities. Such segmentation based methods might be associated with
mixture models for the identification of underlying activities Picard et al. (2007) except that
estimations methods for such model might not be tractable in practice. We propose a new
approach for identifying underlying activities based on the identification of homogeneous region
in a trajectory. This approach is built using a dynamic programing algorithm coupled with
regularization technics.

A segmentation - classification strategy In general, assume that (Yk)k∈1,...,K are the dis-
crete time observations of a stochastic process (Yt) whose distribution (described by a time series
or a SDE) depends on unknown parameters θ. We denote by Fθ this distribution. We propose
a stragety in two steps : first segmentation of the trajectory, secondly use of regularization tools
to gather the segments with similar parameters.

• Segmentation We assume that the parameters are not constant along time but can take
a finite number of values, i.e. there exist times instants τ1 ≤ · · · ≤ τR such that the
distribution of Y over [τr, τr+1] is Fθr where the (τr)r=1...R and the (θr)r=1...R are unknown.
The change points (estimation of (τr)r=1...R and (θr)r=1...R) are chosen to be of minimal
cost where the cost is some well chosen criteria, such as minus the log-likelihood or the
quadratic loss (depending on the model). Solving this problem is a hard computational
task, however it can be enhanced by dynamic programming strategies.
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• Regularization Once the change points have been identified, we want to gather the segments
in order to be able to identify groups of segments to a specific activity. Concretely, we
want to find non-consecutive segments [τr, τr+1] sharing the same parameters θr. To that
purpose, we propose to use regularization methods such as Group-Lasso. Dealing with the
dependency between the sequential observations is a complex issue, we are working on it.

A first successful attempt on the Variational Auto Regressive (VAR) model has been presented in
[P5]. The method has to be tested on other models and with non-regularly observed trajectories.
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Chapter 2

Bayesian Inference for some
multiplicative counting processes

Contributions In this chapter, I present four contributions written with J. Rousseau, V.
Rivoirard (for three of them) and C. Scricciolo (for two of them). The first work [A11] is
motivated by the analysis of an electrical network through time and we propose the Bayesian
inference of a special counting process in the particular case where the process N(t) is partially
observed (Section 1). Contributions [A13] and [A14] are dedicated to the study of frequentist
concentration properties of the posterior distribution in a Bayesian non-parametric context:
[A13] focuses on the posterior concentration in multiplicative Aalen process, whereas the second
one [A14] considers the concentration in the case of a data-dependent prior (Empirical Bayes).
In both papers, I propose numerical illustrations requiring the design of adapted algorithmic
tools. These works are described in Sections 2. Finally, Section 3 is dedicated to the Bayesian
non-parametric inference of multivariate Hawkes processes [S2].

1 Bayesian inference for partially observed multiplicative inten-
sity processes [A11]

This joint work with J. Rousseau [A11] is motivated by the analysis of an electrical network
through time.

1.1 Context and model

Context Assume that the electrical network is composed of a cable (of constant length d) and
accessories (such as joints, etc). We observe the evolution of the network and more precisely the
sequences of incidents (failures) taking place either on the cable itself or on the accessories. When
an incident takes place on the cable, it is repaired by exchanging the damaged part (very small) of
the cable by a new piece of cable, connected to the remaining network by two accessories. When
an incident takes place on an accessory, a small part of the network containing the damaged
accessory is removed and replaced by a new piece of cable connected to the network by two
accessories. (see Figure 2.1 for a graphical illustration of the reparation process).
Let X(t) be the number of accessories on the network. The cable incident rate is assumed to
be proportional to the length of the cable (ν1(t) = dνc) whereas the accessory incident rate is
proportional to the number of accessories (νaX(t−)), leading to the following exposure process:

Y (t) = νaX(t−) + νcd.
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Figure 2.1 – Electrical network: the horizontal line represents a cable, each node on the line represents
an accessory. On the left, failure on an accessory : the accessory is replaced by two of them. On the
right, failure on the cable : a new cable is connected to the remaining network by two accessories.

νa and νc are the parameters of interest since they will allow to predict the evolution of the
network in the future.

Partial observation We observe the process on a time interval [τ0, τ0 + τ ]. Meanwhile this
time interval, we have two sources of partial observation.

1. First, in this practical context, we have access to the instants of breakdown but only
partially to the types of breakdown. Indeed, the type of interventions are badly or not
reported. As a consequence, we are in the situation described where the observations are
restricted to the jump instants denoted Ti, the cause of the incidents (cable or accessories)
are unobserved or partially observed.

2. Secondly, the number of accessories is known at the installation of the electrical network (a
long time ago), but the systematic collection of the incident time starts a long time after
this instant. Consequently, the number of accessories at the beginning of the observation
period X(τ0) is unknown and this quantity has to be inferred.

As a consequence, X(t) is a multiplicative intensity process whose parameters of interest have to
be estimated from the observation of the jumps instants collected from a truncated period excluding
the initial state of the process.

Birth and death point of view and generalization Note that, calling "particle" the ac-
cessory, an incident on an accessory can be seen as the birth of one particle (j0 = 1) whereas
a breakdown on the cable corresponds to the immigration of two particles (K = 1, j1 = 2). In
[A11], we consider a more general model : X(t) is a pure-birth processes with multi-size im-
migrations. More precisely, we consider a population of particles such that the particles give
birth (randomly) to j0 particles (or equivalently divides into j0 + 1 particles) with rate ν0 and
immigration groups of sizes j1, . . . , jK arrive with respective rates ν1, . . . , νK . Let X(t) be the
number of particles at time t: X(t) is a counting process where the exposure process Y (t) is

Y (t) = X(t−)ν0 +

K∑
k=1

νk where X(t−) = lim
s→t,s<t

X(t)

X(t−) is predictable and νk(t) (k = 0, · · · ,K) are positive constants. The aim is then to estimate
the different rate parameters θ = (ν0, . . . , νK) from the partial observation of the counting process
over a finite period [τ0, τ0 + τ ].
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1.2 Bayesian inference

Likelihood and prior distributions Let N(t) be the total number of events occurring in
[τ0, t]. In the following, we use the following notation: N? := N(τ0 + τ), i.e. N? is the total
number of events occurring in the observation period. For every k = 1, . . .K, we denote by
Nk(t) the number of immigration events of size jk occurred in [τ0, t] and N0(t) is the number of
birth events occurred in [τ0, t]. Obviously N(t) = N0(t) + N1(t) + · · · + NK(t). {N0:K(t), τ0 ≤
t ≤ τ0 + τ} is a multivariate counting process with multiplicative intensity (ν0X(t−), ν1, . . . , νK)
where X(t−) = lims→t,s<tX(t), X(t) is the number of particles at time t and

X(t) = X(τ0) +
K∑
k=0

jkNk(t) (2.1)

Let T1, . . . , TN? be the occurrence times of the events during the observation period [τ0, τ0 + τ ].
Let Zi be a discrete variable representing the type of the i-th event : Zi ∈ {0, . . . ,K} is equal
to k if the i-th event is of type k, then we have X(Ti) = X(Ti−1) + jZi .
With these notations, the process is said to be fully observed if N0:K(·) is continuously observed
on [τ0, τ0 + τ ], or equivalently if the total number of events N?, the time events {Ti}i=1...N? and
the nature of the events {Zi}i=1...N? are observed.

In the fully observed setup, the likelihood is (see Andersen et al., 1993):

L(D; θ,X(τ0)) =
K∏
k=0

ν
Nk(τ0+τ)
k

N?∏
i=1

X(Ti−1)IZi=0 × exp

[
−ν0

N?∑
i=1

(Ti − Ti−1)X(Ti−1)− ν•τ

]
(2.2)

here T0 = τ0, TN?+1 = τ + τ0 and ν• =
∑K

k=1 νk.

We set prior distributions on the νk:

νk ∼ Γ(αk, βk), ∀k = 0, . . .K.

Remark 1.1. It is easy to notice that in this case of a complete observation of the process, the
model is conjugate and the Gamma posterior distributions of (ν0, ν1, νK) are easy to calculate.

Estimation from the partial observation of the process We now consider the case where
we partially observe the process: more precisely, we observe all the instants of occurrences T1:N?

and partially the types of the events (Zj)j=1...N? . Let Z denote (Z1, . . . , ZN?). We introduce
nnobs and nobs the numbers of non-observed and observed event types respectively. Let Znobsbe
the vector composed of the non-observed Zi’s and Zobs = Z \ Znobs.
We also assume that X(τ0) is unknown and has to be estimated. We first prove that the
parameters can be identified.

Identifiability of the model The likelihood of the observations D = (N?, T1:N? ,Zobs) is

L(D; θ,X(τ0)) =
∑

z∈{0,...,K}nnobs
L(N?, T1:N? ,Zobs, z; θ,X(τ0)) (2.3)

Proposition 1. Let (θ,X(τ0)) and (θ′, X ′(τ0)) be two sets of parameters such that for any partial
dataset D = (N?, T1:N? ,Zobs),

L (D; θ,X(τ0)) = L
(
D; θ′, X ′(τ0)

)
Then θ = θ′ and X(τ0) = X ′(τ0).
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Interestingly, even if nobs = 0, i.e. if none of the types of events are observed, the parameter θ
can still be identified. The result is proved in [A11] for the least favorable case when nobs = 0.

Prior derivation on X(τ0) SinceX(τ0) has a strong influence on the inference, the choice of its
prior π is a key issue. A first solution is to propose a uniform distribution on {x(τ0)−, . . . , x(τ0)+} ⊂
N: X(τ0) ∼ U{x(τ0)−,...,x(τ0)+} where x(τ0)− and x(τ0)+ are elicited.
An alternative is to use the probabilistic structure of the counting process N0:K to construct a
coherent prior distribution on X(τ0). It is often the case (see for instance linear assets, as in our
motivating example based on the electrical network) that although X(τ0) is not known, the state
of the network at its installation –several decades prior to the beginning of the study at time τ0–
is known. When the observation period starts, the system has evolved until a certain number
X(τ0) of particles. As a consequence we propose to derive the prior distribution on X(τ0) from
the asymptotic distribution of the number of particles. This asymptotic distribution is given in
Theorem 5.

Theorem 5. Let X(t) be the number of particles issued from the pure birth multi-immigration
process described previously. We assume that X(0) = x0 and the following two conditions:

• (i) ∀k = 1, . . . ,K, jk/j0 = rk ∈ N∗.

• (ii) For all k ≥ 1 νk(t) = νk and there exists t1 > 0 such that ν0(t) = ν0,1It≤t1 + ν0,2It>t1
with 0 < ν0,1 ≤ ν0,2.

Then setting V0(t) =
∫ t

0 ν0(u)du and ν• =
∑K

k=1 νk,

e−j0V0(t)X(t)
L−−−−→

t→∞
Γ

(
x0

j0
,

1

j0

)
+

rK−1∑
l=0

Gl

where the Gl’s are independent random variables with G0 ∼ Γ
(

ν•
ν0,2j0

, 1
j0

)
and for l = 1, . . . , rK−

1,

Gl ∼
∞∑
j=1

ωj,lΓ

(
jl,

1

j0

)

with ωj,l = eλl
λjl
j! , λl = αl

lν0,2j0
, αl = ν•, ∀l ∈ {1, . . . r1 − 1} and αl = νl + · · · + νK , ∀l ∈

{rk−1, . . . , rk − 1}, ∀k = 2 . . .K

Theorem 5 shows that as τ0 increases, conditionally to the νj ’s and x0, X(τ0)’s distribution can
be approximated by the product of ej0V0(τ0) and the sum of infinite mixtures of Gamma random
variables. Neglecting the modification of the system through time may lead to strongly biased
estimation, as soon as V0(τ0)j0 is not negligible. For intermediate value of τ0 it is possible to
improve the approximation by re-centering the distribution using the true mean of X(τ0) which
can be deduced from the Laplace transform given in [A11]. We denote by πR∞ the re-centered
asymptotic distribution.

Posterior sampling for Bayesian inference Once the prior distribution has been derived
from the asymptotic properties of the process, the model is not fully conjugate anymore (see
equation (2.2)). As a consequence, we have to resort to a Metropolis-Hastings algorithm. The
proposal distributions on X(τ0) and (ν0, . . . , νK) can be found in [A11] and have proved their
efficiency on the simulation study.

36



1.3 Numerical studies

We give here an insight of the large simulation study performed in [A11]. All the numerical
experiments take place in the reliability framework described in Section 1.1.

Influence of the non-observation of Z First, assuming that the initial state of the process
X(τ0) is known, we illustrate the influence of the non-observation of Z on the quality of estimation
of the parameters. We considered 4 scenarios with a varying rate of non-observed Z (0%, 33%,
66% and 100 %) Denoting by ν̂

(m)
a and ν̂

(m)
c the posterior means of νa and νc respectively

associated to dataset m, we compute the relative bias and relative root mean square error. and
report them in Table 2.1 in percentage. As expected, the quality of estimation decreases when
the number of observations decreases but remains at a reasonable level.

% of non-observed Z 0% 33% 66% 100%

νa
Relative Bias (%) -0.85 -0.99 -1.46 -3.36
RMSE (%) 6.58 7.14 8.31 8.66

νc
Relative Bias (%) -2.12 -3.09 -1.47 4.76
RMSE (%) 12.34 14.06 18.48 11.48

Table 2.1 – Simulation study 1 (X(τ0) known and fixed): relative bias and RMSE (in percentage) for ν̂a
and ν̂c in the 4 scenarios

Estimation of X(τ0) and θ We also focus on the inference of X(τ0), either fixing or estimat-
ing it using either a uniform prior distribution U{100···1000} or using the recentered asymptotic
distribution as a prior πR∞. We study how the strategy influences the estimation of νa and νc.
In Figure 2.2, we plot the posterior densities of νa (upper) and νc (bottom) for one arbitrarily
chosen dataset. As expected, X(τ0) does not influence the posterior distribution of νc and the
posterior densities corresponding to the 4 scenarios nearly overlap. On the contrary the posterior
density for νa clearly depends on X(τ0). If X(τ0) is under-evaluated (scenario 1), the posterior
density of νa (dashed line) is shifted to the right. When a prior on X(τ0) is considered, the
re-centered asymptotic prior distribution clearly outperforms the uniform prior distribution.
[A11] presents additional simulation studies highlighting the fact that our ad-hoc prior dis-
tribution performs well. Many extension of the model can be considered and are discussed in
[A11]. In the next work, we are interested in the non-parametric intensity estimation of Aalen
multiplicative intensity models.
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Figure 2.2 – Influence of the non-observation of X(τ0) on the posterior distributions of νa (left) and νc
(right) for one dataset: prior distribution (plain line with diamonds), posterior distribution with the true
X(τ0) (Scenario 0) (plain line), posterior distribution with under-evaluated X(τ0) (Scenario 1) (dashed
line), posterior distribution with a uniform prior distribution on X(τ0) (Scenario 2) ( · − ·) and posterior
distribution with asymptotic prior distribution on X(τ0) (dotted line).

2 Bayesian non-parametric inference for counting processes with
Aalen multiplicative intensities [A13] [A14]

Two of my papers [A13] and [A14] were written with V. Rivoirard, J. Rousseau and C. Scricciolo
in non-parametric Bayesian framework. These papers include theoretical results on asymptotic
results of the posterior distribution and numerical experiments requiring the development of
adapted and complex algorithms. These works are presented here in a unified framework.
[A13] studies the concentration properties of the posterior distribution around the true parameter
for Aalen multiplicative intensities models. Several families of non-parametric prior distributions
are studied (Dirichlet Process Mixtures, Log-spline and log-linear priors). All the prior distribu-
tions considered in [A13] are assumed to be data-free. However, it is of common usage to choose
hyperparameters depending on the data, thus resulting into empirical Bayes. Paper [A14] studies
the properties on concentration of the posterior distribution in several non-parametric models
with Dirichlet Process Mixtures (DPM) prior distributions, when the hyperparameters are data-
dependent. The numerical experiments were conducted on two particular Aalen models, namely
the inhomogeneous Poisson process and the right-censoring model. In both cases, we aimed at
estimating the intensity function. While, the density estimation with DPM has been widely
studied in the literature, the estimation of intensity function is less addressed.
In the following, we first present the Aalen multiplicative intensity model and the two particular
models we treat hereafter (Section 2.1). Section 2.2 supplies a short introduction to Dirichlet
process mixtures and sets the prior distribution used in the numerical experiments. In Section
2.3, I give some concentration results derived in papers [A13] and [A14]. For the sake of clarity,
I only give results adapted to the numerical experiments. However, much more general theorems
can be found in the original papers [A13] [A14]. Posterior sampling algorithms adapted to
DPM prior are evoked in Section 2.4. Finally, Section 2.5 provides some insights on the various
numerical results obtained in the papers.
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2.1 Introduction to Aalen multiplicative processes

Counting processes (say N(t)) are commonly used in various fields of applications such as
medicine –see Gusto and Schbath (2005) for instance– public health biology or reliability –see
Chen (2011) for instance– or more generally in risk theory, see Ogata (1999) for instance. These
processes are driven by their intensity process λ(t) such that P(occurrence ∈ [t, t+ dt]) = λ(t)dt.
The most simple counting processes are homogeneous Poisson processes, whose intensity process
is a constant deterministic positive number λ(t) = λ. A classical generalization of the homoge-
neous Poisson process is the inhomogeneous Poisson process whose intensity process is a positive
deterministic function. Although widely used in practice and flexible, these processes are limited
by the fact they do not allow for endogenous evolution of the intensity function.
Aalen multiplicative intensity models allow for such an evolution. They are point processes such
that the stochastic intensity is written as λ̃(t) = λ(t)Yt, where λ is a non-negative deterministic
function called intensity function and (Yt)t is a non-negative predictable process. Informally,

E[N([t, t+ dt]) | Gt− ] = P[N([t, t+ dt]) = 1 | Gt− ] = P[N([t, t+ dt]) > 0 | Gt− ] = Ytλ(t) dt.
(2.4)

where (Gt)t its adapted filtration. Note that, almost surely, we have no jump of N on sets where
λ or Y vanishes.
The log-likelihood at λ with respect to the filtration (Gt)t≥0 can be expressed as

logLn(λ) =

∫ T

0
log(λ(t)) dNt −

∫ T

0
λ(t)Yt dt, (2.5)

see Daley and Vere-Jones (2003) or Karr (1986).
Inhomogeneous Poisson processes and Right-censoring models are two examples of Aalen multi-
plicative intensity models.

Inhomogeneous Poisson processes Poisson processes correspond to the case where the
process (Yt)t∈[0,T ] is equal to 1. Assume that we observe n independent Poisson processes with
common intensity λ on [0, T ]. This model is equivalent to the model where we observe a Poisson
process with intensity n× λ, so it corresponds to the case Yt = n for all t ∈ [0, T ]. In this case,
if T1, . . . , TNT are the jump times of N over [0, T ], we have

logLn(λ) =

NT∑
i=1

log(λ(Ti))− n
∫ T

0
λ(t) dt. (2.6)

In this example the observations are D = (Nt)t≤T .

Right-censoring models Right-censoring models are very popular in biomedical problems,
(see, for instance, Example I.3.9 of Andersen et al. (1993) concerning the survival analysis with
right-censoring of patients with malignant melanoma). We consider n patients and, for each
patient i, Ti (a non-negative random variable) is the lifetime with density f that may be censored.
Ci is the censoring time assumed to be independent of Ti. We face with censoring when, for
instance, the patient drops out of a hospital study: the time of death is not observed, but we
know that the patient was still alive when he left the study. In right-censoring models, we
observe (Zi, δi) on [0, T ], with Zi = min{Ti, Ci} and δi = ITi≤Ci . In this case, the processes to
be considered are

N i
t = δi × IZi≤t and Y i

t = IZi≥t.
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We assume that the vectors (Ti, Ci)1≤i≤n are i.i.d. and we denote by λ the common hazard rate
of the Ti’s assumed to be finite at least on [0, T ]:

λ(t) =
f(t)

P(T1 > t)
, t ∈ [0, T ]. (2.7)

Note that we do not force the Zi’s to be supported in [0, T ]. Finally, consider N (respectively
Y ) by aggregating the n independent processes N i’s (respectively the Y i’s), so

Nt =
n∑
i=1

N i
t and Yt =

n∑
i=1

Y i
t

and straightforward computations show that the compensator of N is Λt =
∫ t

0 Ysλ(s) ds, t ∈
[0, T ], thus right-censoring models obey the Aalen multiplicative model.
Expressing the log-likelihood, we obtain

logLn(λ) =
n∑
i=1

δi log(λ(Zi))−
n∑
i=1

∫ Zi

0
λ(t) dt. (2.8)

2.2 Dirichlet process mixture priori distribution

Non parametric Bayesian estimation has gained popularity in a large number of applications in
statistics and machine learning (image segmentation, clustering, density estimation, etc.). For
a large introduction to non-parametric Bayesian inference, we refer the reader to Hjort et al.
(2010). I quickly introduce here the tools required herafter. Nonparametric statistics arises
when the parameter of interest (here λ) belongs to a space F of infinite dimension. λ being an
intensity function, we set

F =

{
λ : Ω→ R+

∣∣∣∣ ∫
Ω
λ(t) dt <∞

}
.

Defining a nonparametric Bayesian model requires defining a prior probability distribution on
that infinite-dimensional space. A distribution on an infinite-dimensional space F is a stochastic
process with paths in F . Such distributions are typically harder to define than distributions on
Rd, but stochastic process theory and applied probability supply a large arsenal of tools.
Non-parametric Bayesian estimation has been widely developed for density estimation. Al-
though Aalen processes do not lead to independent and identically distributed observations and
estimating λ is not the same as estimating a density, there are strong connections between the
two problems. To emphasize these connections, for any λ ∈ F , we introduce the following
parametrization

λ = Mλ × λ̄, with Mλ =

∫
Ω
λ(t) dt, λ̄ ∈ F1, and F1 = {λ ∈ F :

∫
Ω
λ(t) dt = 1}.

(2.9)
Estimating λ is equivalent to estimating Mλ and λ̄ where λ̄ is a density function.
Mλ being a positive constant, we will set a Gamma prior distribution on this parameter:

Mλ ∼ Γ(aM , bM ). (2.10)

For the definition of a prior distribution on F1, Dirichlet process mixture models have become
ubiquitous in Bayesian nonparametric modeling (see Müller and Mitra, 2013). Adopting a similar
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strategy, we set mixture of a parametric family with a discrete random probability as a prior
distribution for λ̄:

λ̄(·) =

∫ ∞
0

fθ(·) dP (θ) (2.11)

with θ ∈ Θ. In DPM, the prior over the mixing probability P is the realization of a Dirichlet
Process (DP) (Ferguson, 1973), which is a probability measure on probability measures:

P | A, G ∼ DP(AG) (2.12)

where A ∈ R∗+ and G is a probability distribution on Θ. The combination of equations (2.11)
and (2.12) defines the Dirichlet Process Mixture model (DPM). One representation of the DP
is the stick-breaking scheme, where a realization P is introduced explicitly as an infinite sum of
atomic measures:

P =
∞∑
k=1

ωkδθ∗k (2.13)

where ∀k ≥ 1,

θ∗k ∼i.i.d. G, and ωk = rk

k−1∏
j=1

(1− rk), rk ∼i.i.d. B(1, A),

B denoting the Beta distribution and δθ∗k the Dirac delta measure located in θ∗k. The underlying
random measure P is then discrete with probability one. Using this representation, it comes that
the following flexible prior model is adopted for the unknown function λ̄:

λ̄(t) =

∞∑
k=1

wkfθ∗k(·) (2.14)

By using DPM, it is important to mention that our family of functions will be able to capture
the right shape and hence statistical inference for λ̄ will be improved and reliable. A drawback
of using a model based on the Dirichlet process is that it is infinite dimensional and therefore
inference will be complicated. However, recent innovations in sampling algorithms within infinite
dimensional frameworks have lead to considerable progress in recent years to such an extent that
it is now possible to perform exact inference without the need to set up arbitrary approximations
in the context of density estimation. These algorithms and their adaptation to the Aalen context
will be exposed hereafter.

Particular case of monotone functions In [A13] and [A14], we perform the numerical
experiments on monotone non-increasing intensity for the inhomogeneous Poisson process and
non-decreasing intensity for the right censoring model. To construct a prior on the set of mono-
tone non-decreasing densities over [0, T ], we use their representation as mixtures of uniform
densities as in Williamson (1956)

λ̄(·) =

∫ ∞
0

I(T−θ, T )(·)
θ

dP (θ), P | A, G ∼ DP(AG)., (2.15)

where θ ∈ [0, T ]. Equivalently, to construct a prior on the set of monotone non-increasing
densities over [0, T ], we use the following representation:

λ̄(·) =

∫ ∞
0

I(0, θ)(·)
θ

dP (θ), P | A, G ∼ DP(AG)., (2.16)
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In both models, G is chosen to be a translated inverse Gamma distribution:

G(·) = Ga,γ(·) =

(
1

T
+

1

Γ(a, γ)

)−1

(2.17)

Note that other distributions G can be considered, but this one verifies the assumptions required
to guaranty the asymptotic concentration ([A13],[A14]). Besides, it presents computational
advantages due to conjugacy.

2.3 Theoretical results

Bayesian analysis starts with a prior distribution on the parameter space and this prior distribu-
tion is updated into the posterior distribution given the data D. As a consequence, it is of utmost
importance to ensure that the updated knowledge on the parameter is more and more accurate
as the number of collected data becomes infinite. Such consistency results have been the subject
of a huge literature, first in the parametric context and secondly in the semi-parametric and
non-parametric fields. A large overview of this research field is provided in Ghosal and van der
Vaart (2017)
Papers [A13] and [A14] provide sufficient conditions for assessing contraction rates of posterior
distributions in various contexts. Judging that it would have been too burdensome to present the
results in their general form in this manuscript, I chose to give a glimpse of the proved theoretical
results on the particular models treated in the numerical sections e.g. right censoring model and
inhomogeneous Poisson process with monotone intensity and DPM prior distributions.

2.3.1 Contraction rates of posterior distributions of intensities for Aalen models
and DPM prior

[A13] provide sufficient conditions for assessing contraction rates of posterior distributions of
intensities in general Aalen models on a compact observation time interval [0, T ]. The deriva-
tion of asymptotic results requires conditions on the predictable process Yt and on the prior
distribution.

Assumptions on Yt Let the true intensity λ0 to be estimated be such that
∫ T

0 λ0(t)dt <∞.
We denote by P(n)

λ0
(resp. E(n)

λ0
) the probability measure (resp. the expectation) associated with

λ0. Define
µn(t) := E(n)

λ0
[Yt] and µ̃n(t) :=

1

n
µn(t). (2.18)

[C1] We assume the existence of a non-random set Ω ⊆ [0, T ] such that there are positive
constants m1 and m2 satisfying for any n,

m1 ≤ inf
t∈Ω

µ̃n(t) ≤ sup
t∈Ω

µ̃n(t) ≤ m2, (2.19)

[C2] There exists α ∈ (0, 1) such that, if

Γn :=

{
sup
t∈Ω
|n−1Yt − µ̃n(t)| ≤ αm1

}
∩

{
sup

t∈[0,T ]\Ω
Yt = 0

}
,

then
lim
n→∞

P(n)
λ0

(Γn) = 1. (2.20)
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[C3] For some k ≥ 1 there exists a constant C1k > 0 such that

E(n)
λ0

[(∫
Ω

[Yt − µn(t)]2 dt
)k]

≤ C1kn
k. (2.21)

[C1], [C2] and [C3] are the general conditions required for the demonstration. [C1] and [C2]
allow to control quite precisely the number of jumps of the process N on subsets of Ω. In
particular, the number of jumps of N is bounded by the number of jumps of a Poisson process
with intensity nλ(·). This trick allows us to use the classical machinery for density estimation
developed by Ghosal and van der Vaart (2007) in the density setting. For inhomogeneous Poisson
processes, conditions [C1] and [C2] are obviously satisfied with m1 = m2 = 1 and Ω = [0, T ]
since for any t ∈ [0, T ], Yt = µn(t) = n. It is also verified for right-censoring models with different
values for Ω depending on the support of the Zi’s (see page 39).

Assumptions on the prior distribution We now set the following assumptions on the prior
distribution, adapted to the DPM context.

[C4a] The prior on λ is the one defined in (2.15): λ̄(·) =
∫∞

0

I(T−θ, T )(·)
θ dP (θ) with P | A, Gγ ∼

DP(AGγ) where Gγ is a distribution on [0, T ] having density gγ with respect to Lebesgue
measure (γ being a fixed hyperparameter).

[C4b] The prior on λ is the one defined in (2.16): λ̄(·) =
∫∞

0

I(0, θ)(·)
θ dP (θ) with P | A, Gγ ∼

DP(AGγ) where Gγ is a distribution on [0, T ] having density gγ with respect to Lebesgue
measure (γ being a fixed hyperparameter).

[C5] As in Salomond (2014), assume that there exist a1, a2 > 0 such that

θa1 . gγ(θ) . θa2 for all θ in a neighbourhood of 0. (2.22)

where gγ is the density function of Gγ . Note that this condition is checked by the inverse
Gamma distribution defined in (2.17).

Concentration result The following result holds.

Theorem 6. Assume that the counting process N verifies conditions [C1], [C2] and [C3].
Consider a prior π1 on λ̄ satisfying conditions [C4a] (resp. [C4b]) and [C5]. Assume that
the prior πM on Mλ is absolutely continuous with respect to Lebesgue measure with positive and
continuous density on R+, independent of λ̄. Suppose that λ0 is monotone non-increasing (resp.
non-decreasing) and bounded on [0, T ]. Let ε̄n = (n/ log n)−1/3. Then, there exists a constant
J1 > 0 such that

E(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1ε̄n | D)] = 1− P(n)
λ0

(Γn) +O((log n)k(nε̄2n)−k)

where ‖ · ‖1 is the L1-norm.

Note that 1− P(n)
λ0

(Γn) = 0 for the inhomogeneous Poisson model and decreases at exponential
rate to 0 for the right censoring context.

Comments on the general results [A13] states the same type of concentration inequalities
for other prior distributions such as log-spline and log-linear priors. The general conditions on
the prior distributions can be found in [A13]. The same kinds of results have been first obtained
by Belitser et al. (2015) for inhomogeneous Poisson processes. The theorem in [A13] is proved
for Aalen multiplicative counting processes in general.
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2.3.2 Contraction rates of posterior distributions for data dependent prior

Consider a statistical model (P(n)
θ : θ ∈ Θ) on a sample space X (n), together with a family of

prior distributions (π(· | γ) : γ ∈ Γ) on a parameter space Θ. A Bayesian statistician would
either set the hyper-parameter γ to a specific value γ0 or integrate it out using a probability
distribution for it in a hierarchical specification of the prior for θ. Both approaches would lead
to prior distributions for θ that do not depend on the data. However, it is often the case that
knowledge is not a priori available to either fix a value for γ or elicit a prior distribution for it,
so that a value for γ may be more easily chosen using the data.The prior is then data-dependent
and the approach falls under the umbrella of empirical Bayes methods, as opposed to fully Bayes
methods.
Throughout the paper, we will denote by γ̂n a data-driven choice for γ. There are many instances
in the literature where an empirical Bayes choice for the prior hyper-parameters is performed,
sometimes without explicitly mentioning it. Some examples concerning the parametric case can
be found in Ahmed and Reid (2001), Berger (1985) and Casella (1985). In [A14], contraction
rates of posterior distributions for data dependent prior are proved. As before, I do not expose
here the general theorem obtained in [A14] but give an insight of the one obtained for the Aalen
multiplicative processus with DPM prior on the normalized intensity function λ̄.
We define the following conditions.

[C6] Assume that Gγ is one on these two distributions:

gγ(θ) ∝ γaθa−1e−θγI0≤θ≤T or
(

1

θ
− 1

T

)−1

∼ Gamma(a, γ)

[C7] Assume that γ̂n (the data-driven choice for γ) is a measurable function of the observations
satisfying P(n)

λ0
(γ̂n ∈ K) = 1 + o(1) for some fixed compact subset K ⊂ (0, ∞).

Thus, we have the following result.

Theorem 7. Assume that the counting process N verifies conditions [C1], [C2] and [C3].
Consider a prior π1 on λ̄ satisfying conditions [C4a] (resp. [C4b]) and [C6] with γ̂n as hy-
perparameter. Assume that γ̂n verifies [C7]. Assume that the prior πM for the mass Mλ is
absolutely continuous with respect to Lebesgue measure, with positive and continuous density on
R+, and has finite Laplace transform in a neighborhood of 0. Suppose that λ0 is monotone non-
increasing (resp. non-decreasing) and bounded on [0, T ]. Let ε̄n = (n/ log n)−1/3.Then, there
exists a sufficiently large constant J1 > 0 such that:

E(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1ε̄n | γ̂n, D)] = o(1)

and
sup
γ∈K

E(n)
λ0

[π(λ : ‖λ− λ0‖1 > J1ε̄n | γ, D)] = o(1).

where ‖ · ‖1 is the L1-norm.

Comments As observed in [A13], condition [C3], is quite mild and is satisfied for inhomoge-
neous Poisson processes, censored data and Markov processes. Notice that the concentration rate
ε̄n of the empirical Bayes posterior distribution is the same as that obtained by Salomond (2014)
for the fully Bayes posterior. Up to a (log n)-factor, this is the minimax-optimal convergence
rate over the class of bounded monotone non-increasing (decreasing) intensities.
In the simulation study of Section 2.5.1, a moment type estimator γn has been considered which
converges almost surely to a fixed value, so that K is a fixed interval around such value.
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2.4 Algorithmic developments

In this section, we give insights of the algorithmic tools required to sample from the posterior
distribution in case of a DPM prior on the normalized intensity. The difficulty comes from the
countably infinite representation of P in (2.13). For inhomogeneous Poisson process, we highlight
the fact that, conditionally to N(T ), estimating the intensity is equivalent to the estimation of
a density function of the T1, . . . , TN(T ). As a consequence, we can use standard algorithms
specially designed for this case. We adopted the algorithm proposed by Fall and Barat (2014)
and described in section 2.4.1. For the right censoring model, we can not resort to existing
algorithms and have to develop an ad-hoc one. Our algorithm is described in Section 2.4.2.

Hyperparameters The prior distribution previously defined depends on hyperparameters aM ,
bM , A, a and γ. Depending on the numerical experiments, we chose to set them (at a data-
dependent value or not) or to adopt a hierarchical strategy, setting an hyperprior distribution
on A or γ.

2.4.1 MCMC algorithm for inhomogeneous Poisson process with DPM prior

Using the expression of the likelihood (2.6), the posterior distribution on (Mλ, λ̄) is

p(Mλ, λ̄|D) ∝ Ln(λ)π(Mλ, λ̄)

∝ M
aM+N(T )−1
λ e−(bM+N(T ))MλπDPM (λ̄)

n∏
i=1

λ̄(Ti). (2.23)

where N(T ) is the number of jumps in [0, T ]. As a consequence of (2.23), the estimation of Mλ

and λ̄ can be done separately with

Mλ | D ∼ Γ(aM +N(T ), bM +N(T )).

and

p(λ̄|D) ∝ πDPM (λ̄)

N(T )∏
i=1

λ̄(Ti) (2.24)

Due to the Dirichlet Process Mixture prior, nonparametric Bayesian estimation of λ̄ is more
involved. However, having a look at (2.24), we notice that, in this particular case, estimating λ̄
is equivalent to estimating it as the density function of the T1, . . . , TN(T ).
Handling with the countably infinite representation of P in (2.13) is not an easy task. Ishwaran
and James (2004) resorted to an approximation, truncating the infinite sum at a deterministic
value. The idea of a random truncation has been first introduced by Muliere and Tardella (1998)
and introduced in MCMC sampler by Papaspiliopoulos and Roberts (2008) and in Walker (2007)
using the slice sampler strategy. Kalli et al. (2011) and Fall and Barat (2014) improved this
algorithm. The idea of the slice sampler for DPM is to introduce auxiliary variables making
the mixture model (2.14) conditionally finite. More precisely, we consider the stick breaking
representation of λ̄. Let ci be the affectation variable of data Ti. The DPM model is written as:

Ti|ci,θ∗ ∼ fθ?ci , P (ci = k) = wk,∀k ∈ N∗ (wk)k∈N? ∼ Stick(A), (θ∗k)k∈N? ∼i.i.d Ga,γ .

The slice sampler strategy consists in introducing a latent variable ui such that the joint distri-
bution of (Ti, ui) is p(Ti, ui|λ̄) =

∑∞
k=1wkfθ∗k(Ti)

1
ξk
I[0,ξk](ui) with ξk = min(wk, ζ), which can be

reformulated as:

p(Ti, ui|λ̄) =
1

ζ
I[0,ζ](ui)

∑
k|wk>ζ

wkfθ∗k(Ti) +
∑

k|ui≤wk≤ζ

fθ∗k(Ti)I[0,wk](ui) (2.25)
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Noticing the fact that (wk)k≥1 verifies
∑

k≥1wk = 1 (implying limk→∞wk = 0), the cardinal of
{k,wk > ε} is finite for every ε > 0, and the sum in (2.25) is finite.

Posterior sampling with slice strategy The Gibbs algorithm we propose is decomposed
into three blocks. At each iteration, we sample

[1.] [λ̄,u|D;A, γ] [2.] [A|λ̄,u,D, γ] [3.] [γ|λ̄,u,D, A]

Remark 2.1. In case where γ or A are fixed to a given value, then the corresponding part in
the algorithm is removed.

[1. ] Sampling [λ̄,u|D;A, γ] is the most challenging but the strategy proposed by Fall and
Barat (2014) can be easily adapted. Details are given in the arxiv version of our paper
Donnet et al. (2014).

[2. ] For [A|λ̄,u,D, γ], we use West (1992) to deduce the conditional distribution of A given
λ̄,u,D, γ. Assume that A ∼ Γ(aA, bA), then:

A|x,KN(T ) ∼ πxΓ(aA+KN(T ), bA− log(x))+(1−πx)Γ(aA+KN(T )−1, bA− log(x)) (2.26)

where KN(T ) is the current number of non-empty classes obtained after step [1.] and

x|A,KN(T ) ∼ B(A+ 1, N(T ))

πx
1− πx

=
aA +KN(T ) − 1

n(bA − log(x))
.

[3. ] Finally, if γ ∼ Γ(aγ , bγ), we have to sample from [γ|λ̄,u,D, A]. We can prove that:

γ|λ̄,u,D,∼ Γ

(
aγ + aK?, bγ +

K?∑
k=1

1

( 1
θ?k
− 1

T )

)
(2.27)

where K? is the total number of classes used to represent λ̄ (K > Kn).

2.4.2 Posterior sampling algorithm for the right censoring model

Recall that for i = 1, . . . , n, we observe Zi = min{Ti, Ci}, where Ti ∼ f(·), Ti and Ci are
independent, Ci ∈ [0, 1] and the likelihood function is:

Ln(D; λ̄, Mλ) = Mn?

λ

(∏
i∈O

λ̄(Zi)

)
exp

[
−Mλ

n∑
i=1

Λ̄(Zi)

]
. (2.28)

where Λ̄(t) =
∫ t

0 λ̄(u)du, O = {i ∈ {1, . . . , n}| δi = 1} and n? = #O. Equation (2.28) induces
the fact that in this model, we can not plunge the problem into the density estimation framework
anymore. The previous algorithm has to be adapted. Under the assumption of a DPM prior on
λ̄ ,

λ̄(t) =
∞∑
k=1

wk
I(1−θk, 1)(t)

θk
,

where w1 = v1, wk = vk
∏k−1
j=1(1− vj), vk

i.i.d∼ B(1, A), θk
i.i.d∼ G(·), we can write:

Λ̄(t) =
∞∑
k=1

wkFU(1−θk, 1)(t),
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where FU(1−θk, 1) is the cumulative distribution function of a uniform distribution over (1−θk, 1),
leading to:

Ln(D; λ̄, Mλ) = Mn?

λ

(∏
i∈O

∞∑
k=1

wk
I(1−θk, 1)

θk
(Zi)

)
exp

[
−Mλ

∞∑
k=1

wkH(θk)

]
, (2.29)

where

H(θk) =
n∑
i=1

FU(1−θk, 1)(Zi).

In (2.29), two infinite sums have to be handled. In [A13], we propose the following strategy.

• On the one hand, we suggest to introduce a deterministic truncation R to approximate∑∞
k=1wkH(θk), leading to the following pseudo-likelihood:

L̄n,R(D; λ̄,Mλ) = Mn?

λ

(∏
i∈O

∞∑
k=1

wk
I(1−θk,1)

θk
(Zi)

)
exp

[
−Mλ

R∑
k=1

wkH(θk)

]
.(2.30)

The effect of the deterministic truncation R is studied in the numerical illustration.

• On the other hand, we use the slice sampling strategy proposed by Walker (2007) based
on the auxiliary variables u = (ui)i∈O to deal with

∏
i∈O

∑∞
k=1wk

I(1−θk, 1)
θk

(Zi) in (2.30):

L̄n,R(u,D; λ̄,Mλ) = Mn?

λ

(∏
i∈O

∞∑
k=1

wk
I(1−θk,1)

θk
(Zi)

I(0, wk)(ui)

wk

)

× exp

[
−Mλ

R∑
k=1

wkH(θk)

]
. (2.31)

L̄n,R(u,D; λ̄,Mλ) is such that its marginal expression after having integrated u is L̄n,R(D; λ̄,Mλ).
The sequence (wk)k≥1 being stochastically decreasing the infinite sum in (2.32) only has
(a.s.) a finite number of positive terms. We denote by K?

i = min{k ∈ N∗|∀ l ≥ k,wl ≤ ui},
K? = max{R, (K?

i )i∈O}, ci ∈ N∗ the allocation variable of individual i ∈ O and c = (ci)i∈O.
The augmented likelihood can then be written as

L̃n,R(c, u, Z;ω, θ, Mλ) = Mn?

λ

(∏
i∈O

I(1−θci , 1)

θci
(Zi)

I(0, wci )(ui)
wci

)

× exp

[
−Mλ

R∑
k=1

wkH(θk)

]
×
∏
k

wnkk (2.32)

where nk = #{i ∈ O|ci = k}.

Following (2.32), the MCMC will sequentially sample

[1.] [Mλ|u, c,θ,ω,D] [2.] [θ, c,u,ω, |MλD]

From (2.32) and the prior distribution, we have: [1.] Mλ ∼ Γ
(
aM + n?, bM +

∑R
k=1wkH(θk)

)
,

where H has been defined in equation (2.4.2). Step [2.] is detailed in [A14].
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2.5 Numerical experiments

We present here a glimpse of the numerical experiments included in [A13] and [A14].

2.5.1 Inhomogeneous Poisson process : the benefit of the empirical Bayes strategy

In the context of [A14], the main goal of the numerical experiment is to highlight the impact
of an empirical Bayes prior distribution for finite sample sizes in the case of an inhomogeneous
Poisson process. We simulate datasets with the following intensity function:

λ(t) =

[
cos−1 Φ(t)I[0, 3[(t)−

(
1

6
cos−1 Φ(3)t− 3

2
cos−1 Φ(3)

)
I[3, 8](t)

]
,

where Φ(·) is the cdf of the standard normal distribution. We aim at estimating the λ from 3
datasets corresponding to n = 500, 1000, 2000, respectively. In what follows, we denote by Dn

the dataset associated with n.
As stressed at page 45, three hyper-parameters are involved in this prior, namely, the mass A of
the Dirichlet process, a and γ. The hyper-parameter A strongly influences the number of classes
in the posterior distribution of λ̄. In order to mitigate its influence on the posterior distribution,
we propose to consider a hierarchical approach by putting a gamma prior distribution on A,
thus A ∼ Gamma(aA, bA). In absence of additional information, we set aA = bA = 1/10, which
corresponds to a weakly informative prior. We arbitrarily set a = 2; the influence of a is not
studied in this work. We compare three strategies for determining γ in our simulation study.

Strategy 1: Empirical Bayes - We propose the following estimator:

γ̂n = Ψ−1
[
WN(T )

]
, TN(T ) =

1

N(T )

N(T )∑
i=1

Ti, (2.33)

where the (Ti)’s are the jump instants. Moreover,

Ψ(γ) := E
[
TN(T )

]
=

γa

2Γ(a)

∫ ∞
1/T

e−γ/(ν−
1
T

)

(ν − 1
T )(a+1)

1

ν
dν,

E[·] denoting expectation under the marginal distribution ofN . Hence, γ̂n converges to Ψ−1(E[TN(T )])
as n goes to infinity, thus verifying condition [C7] where K can be chosen as any small but fixed
compact neighborhood of Ψ−1(E[TN(T )]) > 0.

Strategy 2: Fixed γ - In order to avoid an empirical Bayes prior, one can fix γ = γ0. To study
the impact of a bad choice of γ0 on the behaviour of the posterior distribution, we choose γ0

different from the calibrated value γ∗ = Ψ−1(Etheo), with Etheo =
∫ T

0 tλ̄0(t) dt. We thus consider

γ0 = ρ ·Ψ−1(Etheo), ρ ∈ {0.01, 30, 100}.

Strategy 3: Hierarchical Bayes - We consider a prior on γ, that is, γ ∼ Gamma(aγ , bγ). In order
to make a fair comparison with the empirical Bayes posterior distribution, we center the prior
distribution at γ̂n. Besides, in the simulation study, we consider two different hierarchical hyper-
parameters (aγ , bγ) corresponding to two prior variances. More precisely, (aγ , bγ) are such that
the prior expectation is equal to γ̂n and the prior variance is equal to σ2

γ , the values of σγ being
specified in Table 2.2. The posterior sample is obtained with the algorithm previously described.
To compare the three different strategies used to calibrate γ, several criteria are taken into
account: tuning of the hyper-parameters, quality of the estimation, convergence of the MCMC
and computational time.

48



Empirical Fixed Hierarchical Hierarchical 2
n γ̂n CpT ρΨ−1(Etheo) CpT σγ CpT σγ CpT

D500 483 0.4094 782.19
30× 0.4302

822.12
0.1

788.14
0.01

788.00
D1000 1058 0.4398 1610.47 2012.96 1559.17 1494.75
D2000 2055 0.4677 3546.57 9256.71 3179.96 2770.83

Table 2.2 – Computational Time (CpT in seconds), hyper-parameters for the different strategies and
datasets

D500 D1000 D2000

dL1

Empir 0.1382 0.0596 0.0606
Fixed 0.3114 0.2852 0.2885
Hierar 0.2154 0.1378 0.1405
Hiera 2 0.1383 0.0607 0.0724

Table 2.3 – L1-distances between the estimates and the true densities for all datasets and strategies

• In terms of tuning effort on γ, the empirical Bayes and the fixed γ approaches are compa-
rable and significantly simpler than the hierarchical one, which increases the space to be
explored by the MCMC algorithm and consequently slows down its convergence. Moreover,
setting an hyper-prior distribution on γ requires to choose the parameters of this additional
distribution, that is, aγ and bγ , and, thus, to postpone the problem, even though these
second-order hyper-parameters are presumably less influential.

• In our simulation study, the computational time, for a fixed number of iterations, here
equal to Niter = 30000, turned out to be also a key point. Indeed, the simulation of λ̄,
conditionally on the other variables, involves an accept-reject (AR) step (see equation (B3)
in Donnet et al., 2014), whose acceptance rate may drastically drop for some values of γ
as illustrated in Table 2.2.

• Talking about the quality of estimation a bad choice of γ - here γ too large in strategy 2 -
or a not enough informative prior on γ, namely, a hierarchical prior with large variance, has
a significant negative impact on the behavior of the posterior distribution. Contrariwise,
the medians of the empirical and informative hierarchical posterior distributions of λ have
similar losses, as seen in Table 2.3.

As a conclusion, the empirical Bayes strategy is, as expected, efficient from a computational
and accuracy point of view. Its theoretical concentration asymptotic properties reinforce its
importance.

2.5.2 Numerical results for the right censoring model

We conduct a simulation study to illustrate the performances of the MCMC algorithm based on
the truncation presented in Section 2.4.2.

Simulation parameters We consider the following common hazard function:

λ(t) = 2.5 [arctan (20 t− 10)− arctan (−10)] .

The censoring times Ci are distributed as Ci
i.i.d∼ 1

3 U(0,1) + 2
3 δ{1}. The chosen λ and censoring

time distribution ensure a censoring rate equal to 21.46 %.
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(a) (b)

Figure 2.3 – Posterior distributions of Mλ for different values of R. (a) R = 100. (b) R = 500 and 1000.

Hyperparameters Going back to the prior distribution described in (2.10) and (2.16), we set
the hyper-parameters (A, aM , bM , a) in the following way: A = 15 and (aM , bM ) = (4, 1). The
choice of (a, γ) may influence a lot the inference. To avoid this problem, we propose a hierarchical
strategy on a, setting a ∼ Γ(1, 1) and γ = 3.

Effect of the truncation R To study the effect of truncating with R, we have simulated one
dataset with n = 2000, and run the MCMC algorithm with R = 20, 80, 100, 500, 1000. From
the output in terms of the (approximation) of the posterior distribution of Mλ we observe that
for R = 500 and R = 1000, the results are equivalent and the posterior distribution concentrates
around the true value. Not surprisingly, for the small values of R, the estimation degenerates
and the posterior distributions concentrate around aberrant values. This is shown in Figure 2.3.
A finer study of this phenomena is proposed in [A13]. We also propose a strategy to calibrate
R at a low cost.

Results With each simulated dataset, we concatenate the 5 chains to obtain a sample from
the posterior distribution. For 4 of the datasets arbitrarily chosen, we plot 100 realizations of the
posterior distribution of λ (Figure 2.4, on the left). Using the formula S(t) = exp(−

∫ t
0 λ(t) du),

we also plot 100 posterior realizations of F and compare it with the true cumulative distribution
function (Figure 2.4, on the right). The estimation of λ is of good quality over [0, 0.7], the
estimation is less accurate at the end of the interval, due to the increasing proportion of censored
data. However, it corresponds to the tail of the distribution, and so this phenomenon is less
noticeable on the F plots.
As a consequence, we have proposed an algorithm partially handling the countably infinite rep-
resentation of the DPM and exhibiting good performances in practice.
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Figure 2.4 – Posterior distributions. For one arbitrarily chosen dataset, on the left 100 realizations (gray
lines) of λ under the posterior distribution issued from the last iterations of the 5 MCMC chains; The
posterior mean is plotted in plain line, the true λ is the line with squares. On the right, the corresponding
curves for F : posterior simulation in gray, estimated in plain line, true F in line with square; the empirical
probability function of the Zi is the line with triangles
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3 Bayesian non-parametric inference for multivariate Hawkes pro-
cesses

3.1 Introduction

Hawkes processes, introduced by Hawkes (1971), are specific point processes which are extensively
used to model data whose occurrences depend on previous occurrences of the same process. To
describe them, we consider N a point process on R. For any Borel set A of R, we denote by
N(A) the number of occurrences of N in A. For short, for any t ≥ 0, Nt denotes the number of
occurrences in [0, t]. We assume that for any t ≥ 0, Nt <∞ almost surely. If Gt is the history of
N until t:

Gt = σ {N(C) : C ∈ B(R), C ⊂ (−∞, t]} ,

then, λ, the predictable intensity of N at time t, which represents the probability to observe a
new occurrence at time t given previous occurrences, is defined by

λtdt = P(dNt = 1 | Gt−),

where dt denotes an arbitrary small increment of t and dNt = N([t, t + dt]). For the case of
univariate Hawkes processes, we have

λt = φ

(∫ t−

−∞
h(t− s)dNs

)
,

for φ : R 7→ R+ left-continuous and h : R 7→ R. We recall that the last integral means∫ t−

−∞
h(t− s)dNs =

∑
T∈N :T<t

h(t− T ).

The case of linear Hawkes processes corresponds to φ(x) = ν + x and h(x) ≥ 0 for any x. The
parameter ν is referred as the spontaneous rate and h as the self-exciting function. We now
assume that N is a marked point process, meaning that each occurrence Ti of N is associated to
a mark mi ∈ {1, . . . ,K} (see Daley and Vere-Jones, 2003). In this case, we can identify N with a
multivariate point process and for any k ∈ {1, . . . ,K}, Nk(A) denotes the number of occurrences
of N in A with mark k. In the sequel, we only consider linear multivariate Hawkes processes, so
we assume that λk, the intensity of Nk, is

λkt = νk +
K∑
`=1

∫ t−

−∞
h`,k(t− u)dN `

u,

where νk > 0 and h`,k ≥ 0 is the interaction function of N ` on Nk.
Hawkes processes have extensively been used in a large number of applications and in particular
to model earthquakes, interactions in social networks, financial data, violence rates or to analyze
genomes, to name but a few (see [S2] and references therein). In this work, we pay specific
attention on the use of Hawkes processes to model neuronal activities in the same spirit as
Brillinger (1988); Chornoboy et al. (1988); Okatan et al. (2005); Paninski et al. (2007); Pillow
et al. (2008); Hansen et al. (2015); Reynaud-Bouret et al. (2013).
Parametric inference for Hawkes models based on the likelihood is the most classical in the
literature and we refer the reader to Ogata (1988); Carstensen et al. (2010) for instance. Non-
parametric estimation has first been considered by Reynaud-Bouret and Schbath (2010) who
proposed a procedure based on minimization of an `2-criterion penalized by an `0-penalty for
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univariate Hawkes processes. Their results have been extended to the multivariate setting by
Hansen et al. (2015) where the `0-penalty is replaced with an `1-penalty. The resulting Lasso-type
estimate leads to an easily implementable procedure providing sparse estimation of the structure
of the underlying connectivity graph. To generalize this procedure to the high-dimensional
setting, Chen et al. (2017) proposed a simple and computationally inexpensive edge screening
approach, whereas Bacry et al. (2015) combine `1 and trace norm penalizations to take into
account the low rank property of their self-excitement matrix. Other alternatives based on
spectral methods (Bacry et al., 2012) or estimation through the resolution of a Wiener-Hopf
system (Bacry and Muzy, 2016) can also been found in the literature. While frequentist inference
for Hawkes processes has extensively been studied, the Bayes approach has received less attention.
To the best of our knowledge, the only contribution for the Bayesian inference is due to Rasmussen
(2013) who explored and compared two parametric approaches and used MCMC to approximate
the posterior distribution of the parameters.
Our working paper is dedicated on the one hand to the study of the concentration properties of
the posterior distribution for some particular non-parametric prior on the interaction functions,
and on the other hand to numerical illustrations for the posterior sampling using a reversible
jump algorithm. The theoretical part being still in progress, in this manuscript, I only present
the second part of the work.

3.2 Non-parametric Bayesian inference

We aim at estimating the parameters of the multivariate Hawkes models, namely ((νk, h`,k)l,k∈{1,...,K}).
In a neurosciences context, the focus is on the interaction functions, since they drive the interac-
tions between the neurones at stake. The general objective is to identify the groups of neurons
which are independent from the others, i.e. we want as an output of the method an interaction
network like the one in Figure 2.5. However, for any pair on neurones, we are interested in the
duration of the influence, i.e. we want to estimate the support of the interactions functions h`,k.
The prior distribution we set on the (h`,k) takes into account these two specificities.

Prior distribution on (νk, h`,k)l,k∈{1,...,K} First of all, νk being strictly positive quantities,
we set a log-normal prior distribution:

log νk ∼i.i.d N (µν , σ
2
ν), ∀k = 1, . . . ,K (2.34)

with µν = 3 and σ2
ν = 1. About the interaction functions (h`,k)`,k∈{1,...,K}, we assume that we

know an upper bound of h`,k’s support, denoted [0, 0.04]. The prior distribution is defined on
the set of piecewise constant functions, h`,k being written as follows:

h`,k(t) = δ`,k

M`,k∑
m=1

α
(m)
`,k I

[s
(m−1)
`,k ,s

(m)
`,k ]

(t) (2.35)

with s(0)
`,k = 0 and s(M`,k)

`,k = A

• δ`,k is a global parameter of nullity for h`,k. For all (`, k) ∈ {1, . . . ,K}2,

δ`,k ∼i.i.d Bern(πδ). (2.36)

The idea of this parameter is to encourage complete nullity for the interaction functions
and so a sparse interaction network between neurons.
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• For non-null intensities functions, we work in a non-parametric framework. For all (`, k) ∈
{1, . . . ,K}2, the number of steps (M`,k) follows a translated Poisson prior distribution:

M`,k|{δ`,k = 1} ∼i.i.d. 1 + P(λ). (2.37)

To minimize the influence of λ on the posterior distribution, we consider an hyperprior
distribution on the hyperparameter λ:

λ ∼ Γ(aλ, bλ). (2.38)

• GivenM`,k, we consider a spike and slab prior distribution on (α
(m)
`,k )m=1...M`,k

. Let Z(m)
`,k ∈

{0, 1} denote a sign indicator for each step, we set: ∀m ∈ {1, . . . ,M`,k}:

P(Z
(m)
`,k = z|δ`,k = 1) = πz, ∀z ∈ {0, 1}
α

(m)
`,k |δ`,k = 1 ∼ Z

(m)
`,k × logN (µα, s

2
α)

(2.39)

These spike and slab prior on the (α
(m)
`,k )m=1...M`,k

will help to identify the time intervals
where the activity on neuron ` really generates activity on neuron k with possibly latency
periods. Note that Z(m)

`,k α
(m)
`,k ≥ 0, thus resulting into pure mutual exciting behavior. If

P(Z
(m)
`,k = −1|δ`,k = 1) 6= 0, then we are able to handle inhibition behavior. However, it

leads to computational difficulties, see the discussion on page 60.

• On (s
(m)
`,k )m=0...M`,k

, we consider two possible prior distributions. In the first one, referred

as the regular prior in the following, (s
(m)
`,k )m=0...M`,k

is set equal to a regular partition of
[0, A]:

s
(m)
`,k =

m

M`,k
A ∀m = 0, . . . ,M`,k. (2.40)

This prior verifies the assumptions required in the theoretical results. However, in practice,
we also tried a continuous prior distribution on (s

(m)
`,k )m=0...M`,k

, setting :

(u1, . . . , uM`,k
) ∼ Dir(as, . . . as)

s
(0)
`,k = 0

s
(m)
`,k = A

∑m
r=1 ur, ∀m = 1, . . . ,M`,k

(2.41)

where Dir(·) is the Dirichlet probability distribution.

Posterior sampling The posterior distribution is sampled using a standard Reversible-jump
Markov chain Monte Carlo. Considering the current parameter (ν,h), ν(c) is proposed using
a Metropolis-adjusted Langevin proposal: ν(c) := ν + τ [∇ log π(ν) +∇ logL (ν,h)] +

√
2τξ(i),

where ξ(i) ∼ N (0K , IK). For a fixed Ml,k, the heights α(m)
l,k are proposed using a random walk

proposing null or non-null candidates. Changes in the number of steps M`,k are proposed by
standard birth and death moves (Green, 1995). In this simulation study, we generate chains of
length 30000 removing the first 10000 burn-in iterations.

3.3 Numerical results

In the paper, we consider three simulation scenarios involving respectively K = 2 and K = 8
neurons. In this document, I only present the K = 8 scenario.
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Figure 2.5 – Scenario 2. True interaction graph between the K = 8 neurones. A directed edge is plotted
from vertex ` to vertex k if the interaction functions h`,k is non-null.

In this scenario, we mimic K = 8 neurons belonging to three independent groups. The non-null
interactions are the piecewise constant functions defined as:

h2,1 = h3,1 = h2,2 = h1,3 = h2,3 = h8,5 = h5,6 = h6,7 = h7,8 = 30 · I(0,0.02].

In Figure 2.5, we plot the subsequent interactions directed graph between the 8 neurons: the
vertices represent the K neurons and an oriented edge is plotted from vertex ` to vertex k if the
interaction function h`,k is non-null.
Moreover, νk = 20,∀k = 1 . . .K. 25 datasets are simulated on the time interval [0, 22] seconds.
The Bayesian inference is performed considering recordings on two possible periods of length
T = 10 seconds and T = 20 seconds. For any dataset, we remove the initial period of 2 seconds
–corresponding to 25 times the length of the support of the h`,k– assuming that, after this period,
the Hawkes processes have reached their stationary distribution.
In the simulations studies, we set the following hyperparameters:

µα = 3.5, sα = 1
µν = 3.5, sν = 1

P(Z = 1) = 1/2, P (δ = 1) = 1/2
as = 2

Let us first have a look at the L1 distances on λk and h`,k for all 3 the scenarios, all length
observation time. In Table 2.4, we compile the estimated L1 distances on λk and h`,k. More
precisely, we compute:

1

25 ∗K2

∑
sim,`,k

Ê[dL1(h`,k, h
0
`,k)|(N sim

t )t in[0,T ]]

and
1

25 ∗K
∑
sim,k

Ê[dL1(λk, λ0k)|(N sim
t )t in[0,T ]]
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where h0
`,k is the true interaction function and λ0k is the “true” conditional intensity function,

dependent h0
`,k and the observations (N sim

t )t in[0,T ]. The posterior expectation is estimated by
Monte Carlo using the output of the MCMC algorithms. In a few words, as expected, the error
decreases as T increases. As we will detail later, the continuous prior on s gives better results
that the regular prior. In [S2], we also simulated data with smooth interaction functions. As
expected, we perform better when the true interaction function (h`,k) are step functions (with
respect to smooth functions), due to the form of the prior distribution.

K=8

L1 distances on λk T=10 5.65
T=20 3.17

L1 distances on h`,k
T=10 0.1199
T=20 0.0616

Table 2.4 – L1 distances on h`,k and λk

The posterior distribution of the (νk)k=1...K for a randomly chosen dataset is plotted in Figure 2.6.
The prior distribution is in dotted line and is clearly uninformative. The posterior distribution
concentrate around the true value (here 20) with a smaller variance when T increases.

In a neurosciences context, we are especially interested in recovering the interaction graph of the
K = 8 neurons. In Figure 2.7, we consider the same dataset as the one used in Figure 2.6 and
plot the posterior estimation of the interaction graph, for respectively T = 10 on the left and
T = 20 on the right. The width and the gray level of the edges are proportional to the estimated
posterior probability P̂(δ`,k = 1|(Nt)t in[0,T ]). The global structure of the graph is recovered (to
be compared to the true graph plotted in Figure 2.5). We observe that the false positive edges
appearing when T = 10 disappear when T = 20. In Figure 2.8, we consider the mean of the
estimates of the graph over the 25 datasets. The resulting graph for T = 10 is on the left and
for T = 20 on the right.
Note that, in this example, for any (`, k) such that the true δ`,k = 1, the estimated posterior
probability P̂(δ`,k = 1|(N sim

t )t in[0,T ]) is equal to 1, for any dataset and any length of observation
interval. In other words, the non-null interactions are perfectly recovered. In a simulation
scenario with other interaction functions, the results could have been different.
In Figure 2.9, we plot the posterior estimation (with credible regions) of the non-null interaction
functions for the simulated dataset used in Figure 2.7. The time intervals where the interaction
functions are null are exactly recovered. The posterior incertitude of the non-null steps α(m)

`,k

decreases when T increases.
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Figure 2.6 – Scenario 2. Results on (νk)k=1...K for a particular dataset: Prior distribution (dotted line),
Posterior distributions for T = 10 ( dashed line) and T = 20 (plain line).
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Figure 2.7 – Results for scenario 2 for one given dataset. Posterior estimation of the interaction
graph for T = 10 on the left and T = 20 on the right, for one randomly chosen dataset. Level of grey
and width of the edges proportional to the posterior estimated probability of P̂(δ`,k = 1|(Nsim

t )t in[0,T ]).

Figure 2.8 – Results for scenario 2 over the 25 simulated datasets. Posterior estimation of the
interaction graph for T = 10 on the left and T = 20 on the right. Level of grey and width of the edges
are proportional to the posterior estimated probability of 1

25

∑25
sim=1 P̂(δ`,k = 1|(Nsim

t )t in[0,T ]).
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Figure 2.9 – Results for scenario 2 for one given dataset. Estimation of the non null interaction
functions (h`,k)`,k=1,...,8 using the regular prior for T = 10 (upper panel) and T = 20 (bottom). The gray
region indicates the credible region for h`,k(t) (delimited by the 5% and 95% percentiles of the posterior
distribution). The true h`,k is in plain line, the posterior expectation and posterior median for h`,k(t) are
in dotted and dashed lines respectively (often undistinguishable).
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4 Perspectives

This chapter presented my works on counting processes. I now give a few working perspectives.

About the modeling of electrical network through time [A11] First, in this model, we
consider that the Z1, . . . ZN(τ) are partially observed. An other interesting scenario would be
to consider a mis-reporting of the event types Zj ’s. More precisely we observe types of events
Zr1 . . . Z

r
N(τ) which are reported with error, defined by a probabilistic model P [Zr|Z]. Writing

the new full likelihood

L̃(N∗, (Ti, Zi, Z
r
i )i=1,··· ,N∗ , X(τ0)) = L(N∗, (Ti, Zi)i=1,··· ,N∗ , X(τ0))×

N∗∏
i=1

P [Zri |Zi]

we obtain a tractable posterior distribution on (Z, X(τ0), θ) which we can simulate using a Gibbs
sampler.
In our description of the model and methodology, emphasize has been put in the case where the
rates νj are constant. We explain in [A11] how the methodology can be extended to the case
where they depend on time in a parametric way. The structure of the algorithms would remain
the same, apart from possible loss in conjugacy so that Hasting-Metropolis steps within Gibbs
might have to be considered in such situations, depending on the parametric form of the function
νj(t; θ). Depending of the form of νj(t; θ), extensions of Theorem 5 to cases where the νk’s are
allowed to vary could be obtained.
An other direct extension from our model is to consider covariates which do not vary with time.
In that case a hierarchical formulation of our Bayesian model can be stated as follows. Let C
denote the covariate taking values in a set C, typically C would be finite, then given C, define the
same process (NC(t), XC(t), t ∈ [0, T ]) with parameters νC = (νC,0, . . . , νC,K), assume that the
parameters νC are independent and identically distributed from the prior distribution proposed
previously.
An easier way to consider an aging in the system is to say that after a given time τ?, the accessories
are replaced by a new type of material with their proper failure rate ν?. In that context, we
would have a multi-type counting process. Let X?(t) denote the number of new type-accessories
and X(t) the number of old type accessories. After τ∗, at each event (immigration or birth) X(t)
decreases and X?(t) increases conjointly. The study of that process and the estimation of the
parameters would remain essentially the same as the one presented in the paper.

About the non-parametric estimation of Intensities for Aalen processes [A13] [A14].
From an algorithmic point of view, in [A13] [A14], we adapted algorithms able to handle (par-
tially) with the countably infinite representation of P in (2.13). However, the result is not
completely satisfactory since we have to introduce an arbitrary truncation for the right censoring
model. Moreover the algorithms are specially designed for each model. Looking for an other slice
sampler strategy adapted to the Aalen multiplicative intensities process would be a challenging
but interesting perspective.

Perspectives for multivariate Hawkes processes In order to stick to the theoretical
results, we restricted the simulation study to null or positive interaction functions, setting
Z

(m)
`,k ∈ {0, 1} in (2.39). In practice, the methodology presented before could be easily ex-

tended to any type of interactions, i.e. Z(m)
`,k ∈ {−1, 0, 1}. However, this extension could lead to

additional non-negligible computational time.
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Indeed, when the interaction functions are non-negative, the conditional intensity for neuron k
defined as :

λ?(t, k) = νk +
K∑
`=1

∫ t−

−∞
h`,k(t− u)dN (`)

u .

has to be integrated over [0, T ] to get the likelihood function. Since t 7→ λ?(t, k) is not regular,
its integration can not be performed with a standard numerical solver. When (h`,k)`,k∈{1,...K}
are piecewise constant functions, the integral can be computed in a close form with a complexity
linear in the number of step sizes (M`,k) and the number of occurrence times.
However, when considering non-positive interactions, the conditional intensity has to be modified
to guarantee its positivity. A standard modification is the following one:

λ?(t, k) = φ

{
νk +

K∑
`=1

∫ t−

−∞
h`,k(t− u)dN (`)

u .

}

where φ : R 7→ R+ is a non linear function (φ(x) = x2 or {x}+). In this context, the integration of
t 7→ λ?(t, k) is an operation of larger complexity, thus implying, in practice, a possibly substantial
increase of the computational time.
Moreover, at that time, for computational time reasons, we are not able to handle real neuro-
sciences datasets. Indeed, with our non-parametric Bayesian strategy, we are able to obtain not
only good estimates but also posterior variances, which is a progress with respect to Hansen et al.
(2015). However, the computational time become unreasonable after 10 neurones. A solution
could be sought among the deterministic approximations of the posterior distributions such as
variational approximations. Linderman and Adams (2015) propose such a promising strategy
after having discretized the process. It would be interesting to understand the practical and the-
oretical consequences of such a discretization. Also note that assessing in general the properties
of variational approximations of the posterior is a hot topic at that time.
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Chapter 3

Statistical inference of network datasets

As described before, my work on Hawkes processes aims at inferring a connection graph between
neurons. The inference of graphs representing dependence (or independence) between stochas-
tic variables or processes is a hot topic both from the methodological and applied points of
views. Note that in a paper with Jean-Michel Marin [A3] we worked on the calibration of prior
parameters for Gaussian Graphical Models (through an adapted Stochastic version of the EM
algorithm).

In the recent years, I focused my research toward the study of network datasets. This topic
is also linked to graph theory but the point of view is different. Whereas in graph/network
inference, the graph is a tool to summarize the dependence between entities of interest, here I
am interested in modeling network datasets (in sociology and later in ecology). This work lead
to two published papers [A15] and [A16] with Avner Bar-Hen, Pierre Barbillon and Emmanuel
Lazega, one submitted paper [S1] with Stéphane Robin and one on-going work [P6] with Avner
Bar-Hen, Pierre Barbillon and Wesley Dattilo. This chapter is dedicated to the description of
these various works.

Modeling relations between entities (individuals, plants, insects...) is a classical question in
sociology or ecology. Clustering individuals according to the observed patterns of interactions
allows to uncover a latent structure in the data. Stochastic block model (SBM) and Latent
Block models (LBM) are popular approaches for grouping the individuals with respect to their
interaction profile. These models are presented in Section 1.

Stochastic block models or latent block models include latent random variables, making their like-
lihood intractable. Moreover, processing large networks is computationally challenging. When
talking about Bayesian inference, standard stochastic algorithms (such as MCMC or population
Monte Carlo algorithms) quickly reach their limitations when the size of the network and/or
the number of blocks increase. To tackle that point, deterministic approximations of the poste-
rior distribution have been proposed (among them Variational Bayes is well suited to SBM and
LBM). However, there is no theoretical guarantee for the accuracy of such algorithms. Moreover,
as can be illustrated on examples, such algorithms may underestimate the posterior variance.
In a joint work with Stéphane Robin [S1], we propose an algorithm taking advantage of the
last development in Sequential Monte Carlo algorithms and deterministic approximations of the
posterior distribution. This work is presented in Section 2.

From an application oriented point of view, I am interested in modeling complex networks. In
[A15] and [A16], my colleagues and I are interested in the case where relationships of various
types occur conjointly between the individuals. In this situation, the data are represented by
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multiplex networks where more than one type edge may exist between the nodes. To handle
such data, we extend the SBM to multiplex networks, thus obtaining a clustering based on more
than one kind of relationship. Multiplex Stochastic Block Model arises in many situations but
[A15] is motivated by a network of French cancer researchers. The two possible links (edges)
between researchers are a direct advising connection or a connection through their labs. [A16]
is the application of the same model and same inference method to a different dataset, where we
observe at the same time relations of advice and competition between cancer researchers. This
work is presented in Section 3.
Aiming at inscribing my work in an ecological framework, I started working with W. Dattilo,
on multipartite ecological network. To that purpose, with my colleagues P. Barbillon and A.
Bar-Hen we developed a model (and its inference methodology) for multipartite networks. From
my involvement in the interdisciplinary group MIRES I identified several structures of complex
networks for which no model nor inference methods have been proposed until now. These working
perspectives are given in Section 4.

I now give a very short introduction to Stochastic Block Models (SBM) and Latent Block Models
(LBM).

1 Stochastic and Latent block models in a few words and equa-
tions

1.1 Several application contexts but a unified mathematical framework

Networks are now standard tools in sociology and ecology. Mathematically, a network is com-
posed of a set of nodes and a list of edges between pairs of nodes. The set of nodes and the
significations of the edges are context-dependent. For the sake of clarity, I will first present
in a few words the three contexts motivating my work. For each of them, I will identify the
set(s) of nodes and the edges. The SBM and LBM will be introduced hereafter, using a general
formulation.

• Relations between researchers and between laboratories. In [A15] and [A16], we
study various relations between some researchers. In [A15], we are interested in the advice
relations (who gives advices to whom, etc...) between researchers. In this case, nodes are
researchers and there is an edge from node/researcher i to node/researcher i′ if researcher
i gives advices to researcher i′. We are also interested in the resources exchange network
between their laboratories: the nodes are the laboratories and there is an edge from node
j to node j′ if there is a resource transfer (staff, scientific material...) from laboratory j to
laboratory j′. Such relations are oriented. See page 74 for more details on this dataset.

• Mutualistic relations between plants and animals. In my recent work in ecology
[P6], I am interested in the mutualistic relations between plants and animals (pollinators,
seed dispersal birds or ants...). As an example, a plant specie is interacting with a given
ant specie if it has been observed in interaction with the plant within a given period, in a
given area. In this case, we have two sets of nodes, namely the plants on the one hand and
the animals on the other hand, corresponding to two functional groups. Their is an edge
between plant i and animal j if animal i has been observed on plant j. The resulting graph
is a bipartite graph i.e. interactions only occur between plants and animals. See page 77
for more details and plots.

• Social relations between farmers and agrobiodiversity. Finally, at the frontier of
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ecology and sociology, I study on the one hand the social relations between farmers or
gardeners (for instance two farmers interact if they exchange seeds) and on the other hand
I am interested in the diversity of species in their agricultural production. In this context,
two sets of nodes arise, namely farmers and plants. An edge from farmer i to farmer i′

represents an exchange of seeds and an edge between farmer i and plant j means that
farmer i cultivates plant j. See also page 77 for more details on the dataset.

Adjacency matrices are used to represent interaction networks taking place inside a group
of entities (see interactions between researchers, laboratories or farmers). Let E = {1, . . . , n} be
the set of the nodes and X be the corresponding adjacency matrix. X ∈ Mn,n({0, 1}) is such
that Xij = 1 if their is an edge from i to j, 0 otherwise. If the relation is oriented (see examples
in sociology) then X is not symmetric; otherwise, X is symmetric. Moreover, we assume that
Xii 6= 0 (no loop).

Incidence matrices are used to represent bipartite graphs, i.e. relations between individuals
belonging to two distinct functional groups. Let E1 = {1, . . . , n1} and E2 = {1, . . . , n2} be
the two sets nodes corresponding to functional groups 1 and 2. The incidence matrix Y ∈
Mn1,n2({0, 1}) is such that Yij = 1 if entity i of functional group 1 interacts with entity j of
functional group 2.

1.2 Stochastic block models (SBM) and Latent Block models (LBM) defini-
tions

Stochastic block models (Nowicki and Snijders, 2001) and Latent Block models for random graphs
have emerged as a natural tool to model heterogeneity in the connection patterns and to perform
clustering of entities based on their interaction profile. SBM (respectively LBM) are adapted to
adjacency (respectively incidence) matrices.

SBM Assume that we want to study the relations inside a group of n individuals. Let E =
{1, . . . , n} be the set of nodes and X be the adjacency matrix. The simplest stochastic model is
the Erdös-Rényi model which sets that ∀(i, j) ∈ {1, . . . , n}2, i 6= j,

Xij ∼i.i.d Bern(α).

As a consequence, individual connects independently with the same probability. Heterogeneity in
the connection phenomenon can be introduced by considering latent variables Z = (Z1, . . . , Zn) ∈
{1, . . . ,K}n such that (Zi)i=1...n are independent with distribution

P(Zi = k) = πk = πZi , (3.1)

and conditionally to the latent variables Z, the (Xij)i,j are independent with distribution:

P(Xij = 1|Zi = k, Zj = l) = αkl = αZi,Zj , (3.2)

resulting into the so-called Stochastic Block Models. Note that other models with latent variables
can be proposed to model heterogeneity (see Matias and Robin (2014) and references therein).
The likelihood deriving from (3.1) and (3.2) is:

`(X; θ) =
∑

Z∈{1,...K}n

∏
i,j,i6=j

α
Xij
ZiZj

(1− αZiZj )1−Xij
n∏
i=1

πZi (3.3)

=
∑

Z∈{1,...K}n
`c(Y,Z; θ).
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where `c(X,Z; θ) is the so-called complete likelihood:

`c(X,Z; θ) =
∏
i,j

∏
i,j,i6=j

α
Xij
ZiZj

(1− αZiZj )1−Xij
n∏
i=1

πZi , (3.4)

LBM Now, consider two functional groups of respective sizes n1 and n2. Let Y be the in-
cidence matrix corresponding to the bipartite graph of interest. Assuming that the interac-
tion phenomenon is not homogeneous in the population, one can introduce connection hetero-
geneity through latent blocks, resulting into the so-called Latent Block Models (LBM). Let(
Z

(1)
1 , . . . , Z

(1)
n1

)
∈ {1, . . . ,K1}n1 and

(
Z

(2)
1 , . . . , Z

(2)
n2

)
∈ {1, . . . ,K2}n2 be n1 + n2 independent

random variables, such that:

P(Z
(1)
i = k) = π

(1)
k , ∀k = 1 . . .K1, ∀i = 1 . . . n1

P(Z
(2)
j = l) = π

(2)
l , ∀l = 1 . . .K2, ∀j = 1 . . . n2

(3.5)

with
∑K(q)

k=1 π
(q)
k = 1 for q = 1, 2. Then conditionally to Z = {Z(q)

i , i = 1 . . . nq, q = 1, 2}, the
(Yij) are independent with distribution:

P(Yij = 1|Z(1)
i = k, Z

(2)
j = l) = αkl . (3.6)

Equations (3.5) and (3.6) define the Latent Block Model (LBM) resulting into a co-clustering of
rows and columns of Y , whose likelihood is:

`(Y ; θ) =
∑
Z∈Z

∏
i,j

α
Yij

Z
(1)
i Z

(2)
j

(1− α
Z

(1)
i Z

(2)
j

)1−Yij
n1∏
i=1

π
(1)

Z
(1)
i

n2∏
j=1

π
(2)

Z
(2)
j

(3.7)

=
∑
Z∈Z

`c(Y,Z; θ) (3.8)

where Z = {1, . . . ,K1}n1 × {1, . . . ,K2}n2 . `c(Y,Z; θ) is referred as the complete likelihood:

`c(Y,Z; θ) =
∏
i,j

α
Yij

Z
(1)
i Z

(2)
j

(1− α
Z

(1)
i Z

(2)
j

)1−Yij
n1∏
i=1

π
(1)

Z
(1)
i

n2∏
j=1

π
(2)

Z
(2)
j

. (3.9)

1.3 Estimation and model selection

Parameters estimation As soon as (n,K) or (n1, n2,K1,K2) increase, the observed likeli-
hoods (3.3) or (3.7) become intractable (due to the summation over Z) and their maximization
is a challenging task. Several approaches have been developed (for a review, see Matias and
Robin, 2014), both in the frequentist and Bayesian frameworks, starting from Snijders and Now-
icki (1997) and Nowicki and Snijders (2001). However, when the latent data space is really large,
these techniques may be burdensome. Some other strategies have been proposed, such as Bickel
and Chen (2009) relying on a profile-likelihood optimization or the moment estimation proposed
by Ambroise and Matias (2012), to name but a few.
The variational EM (adapted to SBM context by Daudin et al., 2008) is a flexible tool to tackle
the computational challenge in many types of graphs. In a few words, the variational EM aims
at optimizing a lower bound of the log-likelihood, namely

Iθ(RD) = log `(D; θ)−KL[RD, p(·|D; θ)]
= ERD

[log `c(D,Z; θ)]− ERD
[RD(Z)] ,

(3.10)
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where D denotes the observations (X or Y ), KL is the Kullback-Leibler divergence, p(·|D; θ) is
the true conditional distribution of the latent variables Z given the observed data D and RD is
an approximation of this conditional distribution p(·|D; θ). Note that Iθ(RD) = log `(D; θ) if
and only if the RD = p(·|D; θ). Dealing with the exact distribution p(·|D; θ) being impossible,
the principle is to approximate it by RD, where RD belongs to a certain class of "simple"
distributions. The variational EM alternates between the maximization of Iθ(RD) with respect
to RD and its maximization with respect to θ using the two formulations of equation (3.10).
Simulation studies show its practical efficiency (Mariadassou et al., 2010). Moreover, its theo-
retical convergence towards the maximum likelihood estimates has been studied by Bickel et al.
(2013) for binary graphs. Its application to LBM has also been proposed by Govaert and Nadif
(2008). Ad-hoc extensions of the variational EM algorithm have to be designed for every new
probabilistic model.

Model selection through ICL The selection of the most adequate number of blocks K
in SBM (or K1 and K2 for LBM) is a challenging issue. In the recent years, the Integrated
Completed Likelihood criterion (ICL) has become a standard criterion to select the most adequate
number of blocks.
LetM be a model, the well-known BIC (Bayesian Information Criterion) is a penalized likelihood
criterion, widely used for model choice. It is defined as BIC = log `(D; θ̂,M) − PenBIC(M).
The PenBIC(M) (penalizing the complexity of the model) derives from a Laplace approximation
of the marginal likelihood

∫
`(D; θ,M)p(θ)dθ. The BIC criterion provides –under regularity

conditions– a reliable approximation of this integrated likelihood. However, these regularity
conditions on the likelihood function do not hold for mixture models or stochastic blocks models.
Moreover, in the SBM/LBM context, the quantity log `(D; θ̂,M) has no explicit expression (due
to the integration over the latent variables Z).

ICL has been proposed as an alternative to the BIC in the model-based clustering context
(Biernacki et al., 2000). Let `c(D,Z; θ,M) be the complete likelihood [see equations (3.4) and
(3.9)]. ICL is a penalized conditional complete likelihood. More precisely, first considering that
Z is observed, a Laplace of approximation the completed marginal likelihood gives:

log

∫
θ
`c(D,Z; θ,M)p(θ)dθ ≈ log `c(D,Z; θ̂,M)− PenICL(M) (3.11)

when the prior distribution on θ p(θ) is a well-chosen non-informative one. The penalty term
PenICL(M) expresses as:

PenICL(M) =
1

2

{
K2 log(n(n− 1)) + (K − 1) log n

}
for non-symmetric SBM, (3.12)

and

PenICL(M) =
1

2
{K1K2 log(n1n2).+ (K1 − 1) log n1 + (K2 − 1) log n2} for LBM. (3.13)

As in the BIC criterion, the log refers to the number of data. Thus, in (3.12), the n nodes are
used to estimate the K − 1 probabilities π1, . . . , πK−1. The n(n− 1) edges are used to estimate
α.
Z being non-observed, Biernacki et al. (2000) propose to integrate the latent variables, thus
defining:

ICL = E
Z|D,θ̂,M

[
log `c(D,Z; θ̂,M)

]
− PenICL(M). (3.14)
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Note that the latent variables Z can also be imputed replacing them with their posterior mode,
leading to this second version of the ICL :

ICL = log `c(D, Ẑ; θ̂,M)− PenICL(M)

Ẑ = arg max
Z

p(Z|D, θ̂,M).

When the VEM is used to estimate the parameters, we obtain an approximation of the conditional
distribution p(Z|D, θ̂,M) by R̂D,M (minimizing the Kullback distance in a particular class of dis-
tributions). We are then able to give an explicit approximation of E

Z|D,θ̂,M

[
log `c(D,Z; θ̂,M)

]
by ER̂D,M

[
log `c(D,Z; θ̂,M)

]
= log `c(D,ER̂D,M

[Z]; θ̂,M) in the particular cases of SBM and
LBM.

Here are a few comments on the behavior of the ICL criterion. We can decompose the marginal
likelihood log `(D; θ̂,M) as follows:

log `(D; θ̂,M) = E
Z|D,θ̂,M

[
log `c(D,Z; θ̂,M)

]
+H(Z|D; θ̂,M) (3.15)

where H(Z|D, θ̂,M) = −
∫

log p(Z|D; θ̂,M)p(Z|D; θ̂,M)dZ is the entropy of the conditional
distribution p(Z|D, θ̂,M). Consequently, ICL of equation (3.14) may be seen as a penalized max-
imum likelihood, where the penalty includes not only the complexity of the model PenICL(M)

but also the entropy of p(Z|D, θ̂,M). Thus, using the ICL will automatically encourage cluster-
ing configurations with well separated groups. Its capacity to outline the clustering structure in
the data has been tested, either in mixture models (Baudry et al., 2008), LBM (Keribin et al.,
2014) or SBM (Mariadassou et al., 2010).
Moreover, note that, in the SBM context, under standard asymptotic assumptions, the posterior
distribution p(Z|D, θ̂,M) concentrates on the true affections (see Mariadassou and Matias, 2015).
As a consequence, for n large, the entropy vanishes and ICL becomes a standard penalized
maximum likelihood. We expect the same type of results in the multiplex SBM, but additional
theoretical work is required.

I now present a methodological joint work with S. Robin about the Bayesian Inference for SBM
with covariates.

2 Bayesian inference for SBM with covariates [S1]

This joint work with S. Robin deals with the combination of variational methods and Sequential
Monte Carlo methods for Bayesian inference. This work is motivated by the modeling of networks
where any pair of individuals is described by a set of covariates, resulting into the so-called
Stochastic Block model with covariates. I first describe shortly the model and then present the
general methodology we propose in [S1].

2.1 SBM with covariates

We consider the combination of SBM and logistic regression (shortened as ’SBM-reg’ in the
sequel) considered in Latouche et al. (2015). This model aims at deciphering some residual
structure in an observed network once accounted for the effect of some edge covariates. The
model is an extension of the SBM defined in Section 1, equations (3.1) and (3.2), page 65. More
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precisely, consider a set of n nodes; for each pair (1 ≤ i < j ≤ n) of nodes, we observe a p-
dimensional covariates vector cij . Likewise in SBM, we further assume that each node belongs
to one among K groups and we denote Zi the (unobserved) group where node i is affected;
π = (πk)k=1,...,K denotes the vector of group proportions. The model states that the edges of
the observed binary undirected network X = (Xij) are drawn independently conditionally on
the set of latent variables Z = (Zi) as Bernoulli variables:

(Xij |Zi, Zj ,α,β) ∼ B(pij), logit(pij) = cᵀijβ + αZi,Zj

where α = (αkl)k,l=1,...,K stands for the matrix of between-group effects (analogous to the
between-group connection probabilities from SBM, in logit scale) and β = (β`)`=1,...,p for the
vector of regression coefficients.
We are interested in understanding the influence of the covariates on the connection patterns. We
work in a Bayesian framework, setting prior distributions on the parameters. As for the priors,
π has a Dirichlet distribution, both α and β are Gaussian. When considering model selection or
averaging, the number of groupsK is supposed to be uniformly distributed among {1, . . . ,Kmax}.
When inferring β, we need to take into account the uncertainty on the number of groups K.
Rather than to choose the ’best’ model (choosingK), Bayesian Model averaging (BMA) (Hoeting
et al., 1999) is a general principle, which consists in combining the results obtained with several
models. Among other interests, it allows to account for model uncertainty. More precisely, while
model selection consists in choosing K as K̂ = arg maxK p(K|X) and considering the posterior
p(β`|X,K = K̂), BMA directly considers the unconditional posterior

p(β`|X) =
∑
K

p(K|X)p(β`|X,K).

In terms of moments, it results into

E(β`|X) =
∑
K

p(K|X)E(β`|X,K)

V(β`|X) = Vwithin(β`|X) + Vbetween(β`|X)

where Vwithin measures the mean variance of the parameter conditionally on K and Vbetween is
the variance of the parameter due to model uncertainty:

Vwithin(β`|X) =
∑
K

p(K|X)V(β`|X,K),

Vbetween(β`|X) =
∑
K

p(K|X) (E(β`|X,K)− E(β`|X))2 .

2.2 Bayesian inference for SBM with covariates

Existing methods SBM with covariates involves a large number of latent variables (Z). In
Bayesian statistics, this is a typical situation where standard algorithms for posterior sampling
such as MCMC reach their limitations. Indeed, when the space of parameters to explore is of
high dimension, MCMC algorithms will have difficulties in reaching their equilibrium distribution
within a reasonable computational time.
Recently, population based Monte Carlo methods have proved their efficiency and robustness
in front of high dimensional and multimodal spaces. Among population based Monte Carlo,
Sequential Monte Carlo (SMC) (Del Moral et al., 2006) is a method combining parameters
sampling and resampling. More precisely, a sequence of distributions of interest is designed, such
that the first one is simple (i.e. easy to sample from) and the last one is the posterior distribution.

69



This sequence of distributions defines the iterations of the algorithm. At the first iteration, a
sample of parameters is simulated with the first distribution. In the following iterations, the
parameters are stochastically moved, weighted and resampled to follow the current distribution.
The true posterior distribution is reached at the last iteration.
In the recent years, particular fields (such as genomics or network analysis to name but a few)
brought news statistical problems involving an increasing amount of data or statistical models
with a large number of parameters. In such cases, not only MCMC but also population Monte
Carlo algorithms have reached their limitations, requiring unreasonable computational time to
explore the posterior distribution. To deal with such difficulties, deterministic approximations
of the posterior distribution through optimization mathematical tools – such as variational ap-
proximation (Wainwright and Jordan, 2008; Blei et al., 2016), Expectation-Propagation (Minka,
2001) or Integrated nested Laplace approximation (Rue et al., 2009) for instance– have been
proposed. These methods have the great advantage to be computationally light and can handle
large data. However, their theoretical properties and accuracy are still under study. In particu-
lar, we do know that variational approximations may supply underestimated posterior variances
(see for instance Consonni and Marin, 2007, for a large illustration of this phenomena on the
Probit model).
One may therefore be tempted to take advantage of the two approaches in a combined strategy.
The idea of combining variational Bayes inference with SMC is actually not new. Rabinovich
et al. (2015) split the data into block and compute the posterior distribution of θ given each
block. They use a variational argument to propose the product of this partial posterior as a
proxy for the true posterior. Focusing on Gaussian mixtures, McGrory et al. (2016) consider
online-inference and propose a sequential sampling scheme where, for each new batch of data,
the variational approximation is iteratively updated and used as a proposal. Naesseth et al.
(2017) use a SMC approach to get an improved, but still biased, variational approximation.

From the approximate posterior distribution to the true posterior distribution Our
approach is different from all these ones. Our main idea is to design a bridge sampling from
the approximated posterior distribution to the true posterior distribution, the transfer from the
approximate to the exact distribution being performed with an SMC algorithm (Del Moral et al.
(2006)). The sampling method we propose may be considered from two points of view: either
SMC is seen as a tool to correct the approximate distribution, or the approximate posterior
distribution is seen as a mean to drastically accelerate the SMC procedure.
Let `(X|θ) be the likelihood function with θ ∈ Θ the unknown parameters and possibly the
latent variables (Z). π(θ) is the prior distribution on θ. Let p(θ|X) = `(X|θ)π(θ)

p(X) be the posterior
distribution where p(X) is the marginal likelihood.
In what follows, p̃Y is an approximate posterior distribution on θ. We assume that p̃Y can be
easily intensively simulated and that the density function of p̃Y has an explicit expression.

Sequential Monte Carlo samplers generate samples from a sequence of intermediate distributions
(ph)h=0...H where the intermediate distributions (ph)h=0...H are smooth transitions from a simple
distribution p0 to the distribution of interest pH = p(·|X). A classical choice for (ph)h=0...H

(Neal, 2001) is to consider ph(θ) ∝ π(θ)`(X|θ)ρh where ρ0 = 0, ρH = 1, thus slowly shrinking
the prior distribution into the posterior by progressively integrating the data X through the
likelihood function. In this paper, we propose an alternative scheme moving smoothly from the
approximate posterior distribution p̃Y to the true p(·|Y ). The path is thus defined by:

ph(θ) ∝ p̃Y (θ)1−ρh(p(θ|X))ρh

∝ p̃Y (θ)1−ρh(π(θ)`(X|θ))ρh . (3.16)
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where, ρ0 = 0, ρH = 1. In a few words, we start from the easy-to-sample distribution p̃Y (θ)
and progressively replace it with the true posterior distribution, this strategy being known as
annealed importance sampling procedure (Neal, 2001). We claim that this scheme significantly
reduces the computational time and is robust with respect to p̃Y . Note that, when thinking
about p̃Y has a Bayesian variational approximation, the first distribution p̃Y is likely to be more
spiked than the distribution of interest p(·|X) and will assume untrue dependencies between the
parameters: the procedure will be used to get back to the true variance and the possibly ignored
dependencies between the parameters.
To sample from the sequence of distributions (ph)h=1,...,H , we adopt the sequential sampler pro-
posed by Del Moral et al. (2006) where the annealing coefficients ρh will be adjusted dynamically.
With respect to MCMC strategies, Annealing Importance Sampling and SMC have the great ad-
vantage to supply good estimators of the marginal likelihood. Indeed, as proved by Del Moral
et al. (2006), a non-biased estimator of the marginal likelihood derives as a by-product of SMC.
Moreover, the path sampling identity also provides an estimate of the marginal likelihood. De-
tails are in [S1], along with comparison with other existing strategies. Our resulting path sampler
is referred as Shorten Bridge Sampler (SBS) in what follows.

In [S1], the robustness and the efficiency of our algorithm is illustrated on several models: logistic
regression, latent class analysis (LCA) model and finally on SBM with covariates. The logistic
regression serves as a toy example to illustrate the efficiency and the robustness of our method-
ology. In particular, we point out the fact that even if the approximated posterior distribution
p̃ has an underestimated variance (which is known to be the case for the Variational Bayes esti-
mator in this case), our methodology will supply a sample from the true posterior distribution.
Moreover, the algorithm is also robust when p̃Y is spiked around an absurd value.

2.3 Numerical experiments on SBM with covariates

A first comment can be made on the Variational Bayes approximation itself for SBM with
covariates. As illustrated in [S1], the VB approximate posterior is quite accurate for logistic
regression and Gazal et al. (2012) also proved its empirical accuracy for SBM. A first goal of this
simulation study is to check if this accuracy still holds when the two models are combined into the
SBM-reg model. To this aim, we focus on the posterior distribution of the regression parameters.
Secondly, we want to check the accuracy of the VB posterior distribution of the number of groups,
that can be used either to assess goodness-of-fit or for model averaging (Latouche et al., 2015).

Simulation design. We simulate networks with n ∈ {20, 50} nodes according to an SBM-reg
model with K∗ ∈ {1, 2} groups and p = 3 covariates. The parameters are sampled from the prior
distribution. S = 100 replicates are simulated for each configuration and, for each of them, the
SBM-reg models with K ∈ {1, . . . ,Kmax = 5} were fitted with the VB algorithm described in
Latouche et al. (2015). The SBS algorithm is then run on each dataset.

Results for parameter estimation. We first consider the posterior distribution of β when
the number of groupsK is known. On Figure 3.1, we plot on the left the boxplots for the posterior
means (ÊV B(β`|Xs))s=1...100 and (ÊSBS(β`|Xs))s=1...100. The boxplot (over the 100 simulated
datasets) of the posterior standard deviations (σ̂V B(β`|Xs))s=1...100 and (σ̂SBS(β`|Xs))s=1...100

are on the top-right. We clearly observe that the posterior means provided by VB and SBS
are both accurate and similar, but the VB’s posterior standard deviations (sd) are smaller than
SBS’s posterior standard deviations.
We also point out the fact that, although the VB approximate posterior distribution is accurate
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for logistic regression and SBM separately, it is biased for the SBM-reg model, and that the
proposed SBS is a way to correct it. As a consequence of this phenomenon, the empirical level
of VB’s credibility intervals is equal to 84.75%, which is below the nominal level 95%, whereas
SBS’s credibility intervals almost reach the targeted level (93.75%).
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Figure 3.1 – Simulation results for the SBM-regmodel: VB (white) and SMC (red) posterior of the
regression coefficients β = (β`). Top: posterior mean (left), posterior standard deviation (right); x-axis
label: K∗.n (e.g. ’1.20’ means K∗ = 1, n = 20). Left: K = K∗, right: with model averaging.

Results for model selection. We now consider the posterior distribution of the number of
groups p(K|Y ) and its use for model selection. Figure 3.2 provides a comparison of the posterior
provided by VB and SBS. We observe that the VB approximation always results in a more
concentrated distribution than SBS. This behavior can be compared to the under-estimation of
the posterior variance of the parameters that we already discussed. To compare the results in
terms of model selection we computed the frequency at which the right model is selected (i.e.
when K̂ = K∗) and the mean posterior probability of the K∗ (see Table 3.1). We observe that
VB performs better than SBS for both criteria. This parallels Minka (2005), who shows that
the minimization of the Kullback-Leibler (KL) divergence leads to an accurate estimate of the
mode, which is convenient for model selection.

frequency of K̂ = K∗ (%)
n = 20 n = 50

K∗ = 1 K∗ = 2 K∗ = 1 K∗ = 2

VB 100 10 100 42
SBS 46 23 60 36

mean value of P (K = K∗|X)

n = 20 n = 50
K∗ = 1 K∗ = 2 K∗ = 1 K∗ = 2

VB 0.947 0.138 0.982 0.410
SBS 0.435 0.257 0.562 0.387

Table 3.1 – Simulation results for the SBM-regmodel: model selection
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Figure 3.2 – Simulation results for the SBM-regmodel: box-plots for the posterior probability p(g|Y ) as
a function of K. Top n = 20, bottom: n = 50. Left: K∗ = 1, right: K∗ = 2.

Although it does not seem to hamper model selection, the biased estimation of the posterior
p(K|Y ) may have undesired consequences when used for model averaging. To illustrate this
point, we simply computed the empirical coverage of credibility intervals for each β` after model
averaging. The mean coverage across simulation condition and covariate index ` for VB (85.8%)
is still below the nominal level, whereas this of SBS (93.25%) is close to 95%. Figure 3.1 (bottom
right) also shows that the distribution of the ecdf after model averaging is almost confounded
with the uniform for SBS, whereas it still displays a significant bias for VB.

2.4 Conclusion and comments

In this paper, we present a simple strategy to combine the strength of deterministic approxi-
mations of the posterior distribution with sequential Monte Carlo samplers. We illustrated the
efficiency of our approach and its robustness with respect to the deterministic approximation
on a large simulation study. Its application on network datasets stresses the fact that the well-
known underestimation of the posterior variance by the variational approximation can be easily
corrected, sometimes leading to different statistical conclusions. Besides, if dependencies be-
tween parameters have been neglected in the deterministic posterior approximation, they will be
recovered by the sequential sampling.
Our approach is not restricted to the case where a standard deterministic posterior approximation
can be derived (such as Variational Bayes, Laplace or Expectation Propagation estimate). Any
point estimate can be used to design a rough posterior (using a Gaussian or a log-Gaussian seems
to be the simplest solution) and serves as an accelerator of the sampling sequence. This strategy
is different from an empirical Bayes strategy, the point estimate being only used to explore more
efficiently the posterior distribution and not to elicit a prior distribution. The method is not as
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sensitive as standard Importance Sampling to an eventual under-evaluation of the approximate
posterior variance : even with a too narrow approximation of the posterior distribution, the
algorithm is able to get back to the true posterior variance.
SMC directly supplies a final population of particles arising from the true posterior distribution,
as opposed to MCMC strategies, whose convergence is difficult to assess. The proposed SBS
algorithm is adaptive in the sense that the sequence p̃Y (θ)1−ρh(p(θ|X))ρh is determined on the
fly in an automatic way. Furthermore, the algorithm path (summarized by the sequence ρh) is
an indicator of the quality of the deterministic posterior distribution used to initiate the bridge
sampling.
A natural extension of the present work is its adaptation to Approximate Bayesian Computation
(ABC) context for models with no explicit likelihood, following Del Moral et al. (2012). The
difficulty will arise from the specification of the distributions sequence.

As exposed in the introduction, in the last years, I focused my research on complex networks,
“complex” referring to the fact that I am interested in the modeling of several co-occurring
networks. I now present my first work on this topic, in collaboration with A. Bar-Hen, P.
Barbillon and E. Lazega. Section 4 is dedicated to my on-going work with a discussion on
perspectives.

3 Stochastic block model for multiplex networks [A15], [A16]

[A15] arose from a discussion with my colleague E. Lazega in University Paris Dauphine. He is
a specialist of advice social networks.

Application context French scandals during the 1990s involving the voluntary sector around
the cancer research dried up large donations that funded research laboratories. In the 2000s,
the cancer research became politicized, with the launch of the Cancer Plan and the creation of
a dedicated institution. The aim of this public agency is to coordinate the cancer research and
to promote collaborations about top researchers. In this context, Lazega et al. (2008) studied
the relations of advice between French cancer researchers identified as “Elite” conjointly with
the relations of their respective laboratories. At the inter-individual level, two researchers are
considered as linked if at least one kind of relationship exists among advice to deal with choices
about the direction of projects, advice to find institutional support, advice to handle financial
resources, advice for recruitment, and finally advice about manuscripts before submitting them
to journals. Obviously the links are directed. An oriented link between laboratories is defined
as an exchange of resources, as defined in the paper.

Objectives Our objective is to study the advice network between researchers conjointly with
the network of resources exchanges of the laboratories they belong to. The modeling of multilevel
networks is a hot topic in social sciences, aiming at understanding how individual interactions
interact with institutional connections (Snijders and Lazega, 2016).

An individual-oriented strategy In this first work, we decide to adopt the following individual-
oriented strategy (this point is discussed in the paper): the institutional network is used to define
a new network on the individual level i.e. the set of nodes consists in the set of individuals and
for a pair of individuals, two kinds of link are possible: a direct connection given by the individual
network and a connection through their organizations given by the organizational network. As a
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consequence, the individual and institutional levels are fused into a multiplex. We then develop
a statistical model able to detect in multiplex substantial non-trivial topological features, with
patterns of connection between their elements that are not purely regular.

A stochastic block model for multiplex networks Assume in general, that we observe not
2 but Q directed graphs X1, . . . ,XQ relying on the same set of nodes E = {1, . . . , n}. We assume
that ∀(i, j), i 6= j,∀q ∈ {1, . . . , Q}, Xq

ij ∈ {0, 1} and Xq
ii 6= 0. We set X1:Q

ij = (X1
ij , . . . , X

Q
ij ) ∈

{0, 1}Q. Moreover, X1:Q =
(
X1:Q
ij

)
i 6=j

. Let K be the number of blocks and Z = (Z1, . . . , Zn) the

latent variable such that Zi = k if the individual i belongs to block k (note that an individual
only belongs to one block in this version).
The multiplex version of SBM is written as follows: ∀(i, j) ∈ {1, . . . , n}2, i 6= j, ∀w ∈ {0, 1}Q,
∀(k, l) ∈ {1, . . . ,K}2,

P(X1:Q
ij = w|Zi = k, Zj = l) = α

(w)
kl

P(Zi = k) = πk,
(3.17)

where the (Zi)i are independent, and the (X1:Q
ij )ij are independent conditionally to Z. Such a

model involves (2Q − 1)K2 + (K − 1) parameters. Introducing the following notations:

π = (π1, . . . , πK), α = (α
(w)
kl )w∈{0,1}Q,(k,l)∈{1,...,K}2 , θ = (α,π) ,

the likelihood function is written as:

`(X1:Q; θ) =

∫
z∈{1,...K}n

p(X1:Q|Z;α)p(Z;π)dZ ,

=
∑

Z∈{1,...K}n

∏
i,j,i6=j

α
(X1:K

ij )

ZiZj

n∏
i=1

πZi , (3.18)

Note that, conditionally to the groups, the (X1:Q
ij )ij are independent but the various levels

q = 1, . . . , Q are not independent : no assumption is made on the structure of the (α
(w)
kl ) with

respect to w. Once integrated out, the latent variables Z introduce dependence between the
edges.

Statistical inference The likelihood is maximized by an adapted version of the Variational
EM algorithm described in the appendix section of [A15]. This procedure has been added to the
R package blockmodels (Leger, 2015).
The number of blocks K is selected with the ICL criterion, defined in this case as:

ICL(MK) = max
θ

log p(X1:Q, Z̃; θ)− 1

2

{
K2(2Q − 1) log(Qn(n− 1)) + (K − 1) log n

}
.

where Z̃ is the approximated conditional expectation or the conditional maximum (see Section
1.3). The identifiability of the model can be proved and the maximum likelihood estimators are
consistent (see [A15] and theorems there in). No theoretical results are available for the ICL
but numerical experiments performed on data mimicking the real ones prove that this criterion
detects the true number of groups.

Applications On our dataset of interest in [A15], we were able to detect interesting patterns
from a sociological point of view.
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For the sake of clarity, we index by R and L (rather than X1, X2, where R stands for researchers
and L for laboratories) the two adjacency matrices.
In Figure 3.3 we plot the marginal and conditional probabilities of the connections of researchers
(respectively labs) between and within blocks. Note that the study of the estimated marginal
distributions allows us to have results on the researchers without considering the laboratories.
This gives a clear interpretation of the importance of the lab for the researcher network structure.

P(R=1)

1

2
3

4

P(R=1|L=0)

1

2
3

4

P(R=1|L=1)

1

2
3

4

Figure 3.3 – Marginal probabilities of researcher connections between and within blocks (top) and proba-
bilities of researcher connections between and within blocks conditionally on absence (bottom left-hand-
side) or presence (bottom right-hand-side) of Lab connection. Vertex size is proportional to the block
size. Edge width is proportional to the probabilities of connection; if this probability is smaller than 0.1,
edges are not displayed.

Multiplex SBM reveals interesting structural features of the multiplex network. More precisely,
collaboration takes place in a clustered manner for both researchers and laboratories; collabo-
rating laboratories tend to have affiliated researchers seeking advice from one another. Indeed,
Figure 3.3 shows that the existence of a connection (exchange of resources) between labs clearly
increases the probability of connection (sharing advice) between researchers. The reinforcement
of this probability of connection is clearly outstanding in block 2. In this block, the researcher
connections are quite unlikely within the block or with other blocks. However, conditionally
to the existence of a laboratory connection, the researcher connections become more important
especially with block 4. In block 4, the links between researchers are strengthened given a con-
nection between their laboratories. Researchers in block 3 seem to be the least affected by the
connections provided by their laboratories. The case of block 1 is quite peculiar since it contains
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two researchers only. This clustering demonstrates that not all researchers benefit on equal terms
from the institutional level. Some researchers are more dependent on their laboratories in terms
of connections.
Additional interpretation comments were made in [A15] about the identified groups, taking
into account the additional informations (covariates) available on the researchers (“location",
“director of not” and “specialty”, "age", etc...). [A16] is the application of the same model and
same inference method to a different dataset, where we observe at the same time relations of
advice and competition between cancer researchers.

4 On going work and perspectives : towards more complex struc-
tures of networks

This section is dedicated to my most recent work and several perspectives.

4.1 Latent block models for multipartite networks [P6]

I first present my ongoing work on multipartite networks. Section 4.1.1 is dedicated to the
presentation of two different motivating examples involving multipartite networks. Section 4.1.2
presents a probabilistic model able to handle both examples. The inference tools are described
in the following section.

4.1.1 Two motivating contexts

Application context 1 Example 1 takes place in ecology. A high number of interaction types
between plants and animal species co-exist within the natural environment. Among them, we may
think about plant/animal interactions such as herbivory, protection of plants by ants, pollination,
or seed dispersal. These various interactions play a key role in structuring biodiversity. In the
recent years, network tools have been intensively used to understand the structure of these
ecological interaction networks. However, in most of the works, each type of interaction is
considered individually, ignoring the other interactions. A few recent works have considered the
joint study of several interactions. See for instance the papers by Dáttilo et al. (2016), Fontaine
et al. (2011) or Kéfi et al. (2016).
The data we consider is the one provided by Dáttilo et al. (2016) simultaneously studying the
mutualistic interactions between plants and three functional groups, namely ants, pollinators
and seed dispersal birds. The structure of the dataset is given in Table 3.2 in its matrix form
and represented in plotted in Figure 3.4.
In this context, we aim at co-clustering the plants and the animals under the constraint that the
clusters of “animals” must respect the functional classification. In other words, the clusters must
be subsets of the functional groups.

Application context 2 The second example is motivated by the working group MIRES 1,
gathering statisticians, geneticians, ethonologists and ecologists to name but a few. This group
aims at understanding the influence of the social relations on the agrobiodiversity. More precisely,
as an example, we study on the one hand the relations between individuals (farmers ou gardeners)
and on the other hand the diversity of species in the agricultural production. The relations
between individuals are of type “seed exchange” or social link.

1MIRES’ website: https://sites.google.com/site/miresssna/home
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Figure 3.4 – Application context 1. Ecological multipartite network (extracted from Dáttilo et al. (2016))

Defining two functional groups, namely the farmers (or gardeners) and the cultivated species,
the relations between farmers supply an adjacency matrix X11 , whereas the information of “who
cultivates what” defines an incidence matrix X12. The structure of the dataset is given in Table
3.3. Once again, we are interested in a co-clustering of individuals and plants with respect to
these two matrices with clusters respecting the functional group structures.

Finally, there is a need for a probabilistic model supplying a co-clustering of the various func-
tional groups, the clustering being based on the observation of several adjacency and/or incidence
matrices. This unified model is presented in the following section.

4.1.2 A unified statistical model : the block model for complex multipartite net-
works

Let me consider Q functional groups (for instance plants, pollinators, ants... or farmers and
plants) of respective sizes n1, . . . nQ. Assume that our dataset is a collection of matrices (adja-
cency or incidence) between or inside the functional groups. We denote by E the list of couples
(q, q′) for whom we observe an interaction matrix between functional groups q and q′:

X = {Xqq′ , (q, q′) ∈ E}

where Xqq′ is a matrix of size nq × nq′ with values in {0, 1}.
Note that, if q = q′, Xqq′ is an adjacency matrix (symmetric or not, depending on the context),
wherea Xqq′ is an incidence matrix if q 6= q′.
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Table 3.2 – Application context 1. Ecological multipartite network : structure of the data.

Farmer 1 1
Farmer 2 1 1

... X11
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ij

Farmer n1 1 1 1
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Table 3.3 – Application context 2. A social/ agrobiodiversity multipartite network : structure of the data
.
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X12 X13 X14

Z2 Z1 Z3 Z4

X11 X12

Z1 Z2

Figure 3.5 – DAG’s corresponding to model (3.20) for Examples 1 (upper figure) and 2 (lower figure).

Remark 4.1. Given these notations, and adopting the notation 1 for plants, 2 for ants, 3
for pollinators and 4 for seed dispersal birds, the E corresponding to the first context is E =
{(1, 2), (1, 3), (1, 4)}. E is equal to {(1, 1), (1, 2)} for Context 2 if 1 refers to the farmers and 2 to
the plants.

We propose a probabilistic model on (Xqq′)q,q′∈E . Heterogeneity in the connections and depen-
dence between the various matrices are handled through the following Latent Block structure.
Assume that each functional group q is divided into Kq blocks/clusters. For any q = 1 . . . Q, we
denote by (Zqi )i=1...nq the independent random variables such that Zqi = k if entity i of func-
tional group q belongs to cluster k. We set the following model: ∀k = 1 . . .Kq, ∀i = 1 . . . nq,∀q =
1 . . . Q,

P(Zqi = k) = πqk, (3.19)

with
∑Kq

k=1 π
q
k = 1 for any q = 1, . . . Q.

Conditionally to the latent variables Z = {Zqi , i = 1 . . . nq, q = 1 . . . Q}, the observations X =
{Xqq′ , (q, q′) ∈ E} are distributed as follows:

Xqq′

ij |Z
q
i , Z

q′

j ∼i.i.d Bern(αqq
′

Zqi ,Z
q′
j

) . (3.20)

meaning that the probability of connection between i and j depends on the groups to which i
and j belong.

Remark 4.2. Note that, if q 6= q′ then the distribution of Xqq′

ij corresponds to a LBM, if q = q′

then we are dealing with a SBM-type model. As a consequence, this model is able to handle
LBM and SBM at the same time. Moreover, talking about probabilistic dependences, note that
conditionally to the affectation variables Z, the adjacency/incidence matrices are independent.
However, Z being non-observed (latent), the marginalization introduces dependence between the
{Xqq′ , (q, q′) ∈ E} as can be visualized in the DAG corresponding to the models adapted to
Context 1 and Context 2 in Figure 3.5.

4.1.3 Parameters inference and model selection

The parameters of interest are the connection probabilities α = {αqq
′

kk′ , k = 1 . . .Kq, k
′ =

1 . . .Kq, (q, q
′) ∈ E} and the clustering parameters π = {πqk, k = 1 . . .Kq, q = 1 . . . Q}. In

the following, we denote θ = (α,π).
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Complete and marginal likelihoods Let `(X; θ) denote the likelihood of the observations
X for parameter θ. Equations (3.20) and (3.19) allow us to write explicitly the joint distribution
of X and Z (complete likelihood):

`c(X,Z; θ) = p(X|Z;α)p(Z;π)

=
∏
q,q′∈E

nq∏
i=1

nq′∏
j=1

(αqq
′

Zqi ,Z
q′
j

)X
qq′
ij (1− αqq

′

Zqi ,Z
q′
j

)1−Xqq′
ij

Q∏
q=1

nq∏
i=1

πq
Zqi
. (3.21)

Z being latent, the log-likelihood of the observed data log `(X; θ) is obtained by integrating
(3.21) over all the possible values of Z.

log `(X; θ) = log
∑
Z∈Z

`c(X,Z; θ) . (3.22)

However, Z = ⊗q=1...Q{1, . . . ,Kq}nq , which implies that when Q or Kq increase, this summation
becomes impossible to perform in a close form. Following [A15], we are developing an adapted
version of the variational Expectation Maximization algorithm to maximize the likelihood func-
tion. The estimated clusters Ẑ = {Ẑqi , i = 1 . . . nq, q = 0 . . . Q} will be a by-product of the
inference method. Moreover, the ICL criterion can be easily adapted to this model.

4.1.4 Perspectives

The selection of the number of clusters in each functional group is a hard computational task.
Indeed, from a practical point of view, like in any model selection problem, the difficulty comes
from the huge number of models to scan. Let Kmax

q be the maximum number of clusters au-
thorized for functional group q. Then,

∏Q
q=1K

max
q models have to be estimated trough the

variational EM algorithm.
Moreover, as for any EM algorithm, the variational EM is very sensitive to its initialization. As
a consequence, for each model, the algorithm will have to be run not once but several times from
several initial parameters points, making the computational time unreasonable. An exhaustive
strategy –where all the possible models would be estimated– cannot be considered in a general
case. We have to propose a clever procedure to “travel” across the models space.
Several strategies has been proposed, see for instance Leger (2015) or the PhD thesis of Valérie
Robert (Robert, 2017). Note that Valérie Robert developed a model similar to our multipartite
latent block models but in a very different framework, namely pharmacovigilance.
The idea we consider implementing is the following iterative one.

Algorithm 4 (Model selection procedure).

At step r of the iterative procedure, let Mr =M(Kr
1 , . . . ,K

r
q , . . .K

r
Q) be the current model and

ICLr its corresponding ICL criterion.

(r.1) For any, q = 1 . . . , Q,

• If Kq + 1 ≤ K(max)
q , compute the ICL criterion of modelM(Kr

1 , . . . ,K
r
q + 1, . . . ,Kr

Q)
deriving from the VEM optimization using several initialization points.We denote by
ICLr,q,+ the obtained value.
• If Kq ≥ 2, compute the ICL criterion of model M(Kr

1 , . . . ,K
r
q − 1, . . . ,Kr

Q) deriving
from the VEM optimization using several initialization points. We denote by ICLr,q,−
the obtained value.
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(r.2). Set
Mr+1 = arg max

M

{
(ICLr,q,+)

q|Kq+1≤K(max)
q

, (ICLr,q,−)q|Kq≥2, ICLr,
}

(r.3) IfMr+1 6=Mr, go back to (r.1). Otherwise stop and setM? =Mr.

When talking about proposing several strategies for the initialization of the VEM at step (r.1),
we think about the strategy used by Leger (2015) in the R-package blockmodels, i.e. the
likelihood maximization of model M(Kr

1 , . . . ,K
r
q + 1, . . . ,Kr

Q) is initialized by dividing clus-
ters in model M(Kr

1 , . . . ,K
r
q , . . . ,K

r
Q). On the contrary, the likelihood maximization of model

M(Kr
1 , . . . ,K

r
q−, . . . ,Kr

Q) is initialized by merging clusters in model M(Kr
1 , . . . ,K

r
q , . . . ,K

r
Q).

Note that the tasks in (r.1) can easily be parallelized thus inducing a computational time reduc-
tion.
In order to promote the diffusion of our models in the ecology research community, we have to
write the corresponding R-package. In particular, the visualization of the results is of prime
importance. Moreover, the comparison with other clustering strategies standardly used in this
community (such as modularity for community detection and nestedness) has to be discussed.
From an ecological point of view (Application context 1 ), the robustness of our model with respect
to the definition of the functional groups has to be tested. Indeed, sometimes, the definition of
the functional groups is not clearly established. We should study the robustness of our clustering
method with respect to this misspecification. This work is highly linked to ecological aspects
and so has to be discussed with my colleagues experts in the field.

4.2 Multilevel network : a new perspective?

Going back to the data described in Section 3, we had two functional groups, namely researchers
(group number 1) and laboratories (group number 2). Whereas in [A15], we transformed the
dataset into a multiplex network (using the fact that very few laboratories contained more than
one researcher), we propose here to consider the original data. Let X11 be the advice matrix
between researchers, X22 is the matrix of resources exchanges between laboratories and finally
X12 is the matrix of affiliation : X12

ij = 1 if researcher i belongs to laboratory j. The structure
of the data is given in Table 3.4.
In this context too, we aim at co-clustering the laboratories and the researchers with respect
to these three matrices. We adopt a block model strategy. Assume that researchers (resp.
laboratories) are in K1 (resp. K2) classes . For any q = 1, 2, we denote by (Zqi )i=1...nq the
independent random variables such that Zqi = k if entity i of functional group q belongs to
cluster k:

P(Zqi = k) = πqk, (3.23)

with
∑Kq

k=1 π
q
k = 1 for any q = 1, . . . Q.

X11 and X22 being adjacency matrices, it is reasonable to assume that the (X11
ij )ij and (X22

ij )ij
are independent conditionally to the latent variables, naturally leading to the SBM type model:

X11
ii′ |Z1

i , Z
1
i′ ∼i Bern

(
α11
Z1
i ,Z

1
i′

)
X22
ij |Z2

j , Z
2
j′ ∼i Bern

(
α22
Z2
j ,Z

2
j′

) (3.24)

However, talking about the affiliation matrixX12, the dataset we are interested in is such that the
researchers can only belong to one laboratory. As a consequence, the independence assumption
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... X11

ii′ X12
ij

...
Researcher n1 1 1 1
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Table 3.4 – Sociological multipartite network : structure of the data
.

of the (X12
ij )i,j conditionally to the Z is not realistic anymore. We have to define a different

emission distribution on X12. The one we consider is as follows. Let Ai be the affiliation of
i: Ai ∈ {1, . . . n2} and Ai = j if researcher i belongs to laboratory j. We set the following
probability distribution :

P(Ai = j|Z1
i = k, Z2

j = l,Z2) =
α12
kl
n2l

(3.25)

where n2l = #{j|Z2
j = l}. In a few words, individual i (known to be in cluster k) has a probability

α12
kl to work in a laboratory of cluster l. Knowing that i works in a laboratory of cluster l, he

may work in any of the n2l laboratories of cluster l with equi-probability 1
n2l

.

α = (α12
kl )k=1...K1,l=1...K2 is such that ∀(k, l), α12

kl ∈ [0, 1] and

K2∑
l=1

αkl = 1.

Finally, let X12
i,1:n2

be line i of X12, we set:

X12
i,j =

{
1 if j = Ai
0 if j 6= ai

(3.26)

X12 is a deterministic transformation of A = (A1, . . . , An1): X12 = φ(A). As may be noticed in

the DAG corresponding to this model – given in Figure 3.6 – the three matrices X11, X12 and
X22 will take part into the clustering.

Inference, model selection This model is a new way to handle multilevel networks, which
are of high interest in social sciences (Snijders and Lazega, 2016). The block model structure
is a standard tool. We propose here its extension to the context where we combine adjacency
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X11 X12 = φ(A) X22

Z1 Z2

Figure 3.6 – DAG’s corresponding to equations (3.23–3.26)

and affiliation matrices. Variational EM is a promising tool to maximize the likelihood. It has
to be specially designed for this model. Similarly, the model selection criterion (to choose the
number of clusters) has to be derived. The strategies to explore the models space developed for
multipartite networks will be possibly reused in this context.

4.3 Other perspectives

Multiplex - multipartite networks The next natural extension is the multipartite networks
where some adjacency matrices take into account several types of interactions. Such a model is
expected in the MIRES group, where several types of interactions between farmers are studied
(exchanges of seeds, social relations...) conjointly with agrodiversity in each farm property. The
modeling step is straightforward, combining the models previously presented in Sections 3 and
4.1. Similarly, the variational EM algorithm can easily be written and the ICL derives naturally.
The difficulties may arise from the practical implementation and from the interpretation of the
results.

Temporal networks An other interesting issue deriving from the observation of (ecological
or social) interactions is the evolution of their patterns along time. Two situations may occur.

• Snapshot framework. Either snapshots of the network are available at different times. For
instance ecological networks such as plants/pollinators are sampled along months.

• Continuous time framework. Alternatively, the network may be observed continuously and
the connections between entities i and j can occur at any time. For instance think about a
network of subway stations and assume that there is a connection from station i to station
j if a user starts its journey at station i and stops at station j.

The modeling in each case requires different probabilistic tools. I won’t make here an exhaustive
review of the existing literature on that subject. If needed, see the introductions of Matias and
Miele (2017), Matias et al. (2017), Corneli et al. (2016b) or Corneli et al. (2016a) and references
therein. However, I will suggest a few possible research perspectives.

1. From an ecological point of view, I am more interested in the Snapshot framework. Indeed,
ecological interactions such as insect /plant interactions are (as far as I know) never ob-
served continuously but are observed at different moments of the year. In this case, there
is a need to understand the evolution of the connection patterns along time.

• A first strategy is to infer a Latent Block Model at each time, thus giving rise to a co-
clustering at each time and compare the different observed structures. The comparison
in itself is a complex task. Comparisons can be helped by the alluvial flow diagrams,
widely used in the ecologist community. Some statistics such as the Adjusted Rand
Index (ARI) can give a clue on the proximity of the various clusterings but this is not
sufficient to perform a precise interpretation. Some other tools have to be though of.
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• A second option is to use a time-evolving block models, thus modeling the several
networks conjointly. A time dependent SBM and its application to ecological datasets
has been published recently by Matias and Miele (2017). A first interesting per-
spective would be its extension to LBM where we need a co-clustering (plants and
insects) evolving through time. However, in ecology, the time is not important per-se
but what matters is the modification of climate conditions through seasons. Among
climate conditions we think about temperature, but also humidity rates... If consid-
ering a unidimensional variable (only temperature or only humidity), time-dependent
methods can be directly transposed to this case (replacing the time by the humidity
rate). Tools and models have to be developed if several variables have to be taken
into account.

• Finally, comparing ecological through time leads to a problem of data sampling. In-
deed, depending on the seasons, some plants are or are not present. As a consequence,
this phenomena has to be taken into account in the model or at least kept in mind
when interpreting the results.

2. From a statistical/methodological point of view, the modeling of continuously observed
time-dependent network is an interesting and challenging problem requiring the use of
counting processes. Considering the approached proposed by Matias et al. (2017), the
sequence of the interaction occurrences between any two entities (i, j) along time can be
modeled through counting processes. More precisely, the authors propose to use Poisson
inhomogeneous processes whose intensity λij(t) only depends on a latent block structure,
i.e. assuming that i et and j belong respectively to clusters k and l, then the occurrences
sequence T 1

ij . . . T
Nij
ij is the realization of a Poisson process of unknown intensity λkl. The

occurrences sequences are independent processes conditionally to the clusters, the depen-
dence is introduced when marginalizing over the latent blocks. Poisson processes seem well
adapted to the modeling of transport network (city bikes or subway). However, when will-
ing to consider emails networks, one may want to take into account the fact that sending en
email may provoke a response, thus needing self-exciting processes. The Hawkes processes
presented in Chapter 2 would be natural tools. Note that Hawkes processes have already
been used in the network framework (see Blundell et al., 2012; Cho et al., 2013; Linderman
and Adams, 2014, for instance). However, their combination with SBM structure is a new
approach that could be thought of as a long-term working perspective.
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Chapter 4

Autres perspectives et conclusion (en
français)

Suite à mon recrutement à l’INRA dans l’équipe MORSE (MOdélisation et Risque en Statistique
Environnementale) de l’Unité MIA Paris, j’ai choisi d’inscrire mes perspectives de recherche dans
le domaine de la statistique pour l’écologie et l’environnement. Les outils méthodologiques que
je considère sont ceux que j’ai pu développer ces dernières années (modèles définis par équations
différentielles stochastiques, modèles pour données de réseaux, statistiques bayésiennes,etc.) mais
je souhaite me concentrer dorénavant sur des projets essentiellement motivés par des collabora-
tions avec des écologues ou des chercheurs en sciences de l’environnement. J’ai décrit à la fin
de chaque chapitre mes perspectives de recherches se rapportant aux trois domaines évoqués.
J’évoque ici quelques autres projets de recherche.
Je me suis impliquée dernièrement (avec des collègues de l’équipe MORSE) dans une collabo-
ration avec le Museum d’Histoire Naturelle sur la modélisation de données de surveillance des
dépôts métalliques atmosphériques par les mousses terrestres. Le dispositif BRAMM (Biosurveil-
lance des Retombées Atmosphériques Métalliques par les Mousses) permet de cartographier et
de suivre l’évolution, à l’échelle métropolitaine, des niveaux de concentrations en contaminants
accumulés dans des mousses. Les mousses n’ont pas de système racinaire et absorbent directe-
ment les éléments présents dans l’air. Elles sont donc de bons capteurs des contaminants at-
mosphériques. Dans ce cadre, nous cherchons à modéliser la répartition spatio-temporelle des
niveaux de concentrations en métaux accumulés dans les mousses. La difficulté (et l’originalité)
de la modélisation à réaliser porte sur le caractère multi-éléments de la réponse ainsi que sur les
localisations non concordantes des sources d’information.
Par ailleurs, je travaille avec des chercheurs de l’observatoire PELAGIS (UMS 3462, Université de
La Rochelle / CNRS). Plus précisément, nous nous intéressons à des données collectées depuis
2004 sur les campagnes bateau MEGASCOPE dans l’Atlantique Nord-Est. Lors de ces cam-
pagnes opportunistes, les observateurs à bord de bateaux ou d’avions dénombrent les groupes
de mammifères marins observés. De ces comptages seront déduites les estimations d’abondance
des différentes espèces. Une étude rapide des données montre que les observateurs ne peuvent
dénombrer exactement le nombre d’animaux dans les grands groupes; ils fournissent alors un
comptage arrondi à la dizaine ou la centaine. Ne pas prendre en compte ces arrondis a pour
effet de biaiser les estimations d’abondance. Notre premier travail consiste donc à modéliser
les différents comportements d’arrondis pour les observateurs, puis étudier les propriétés statis-
tiques des estimateurs d’abondance sous ces diverses façons d’arrondir les comptages de données
groupées .
Enfin, j’ai profité de l’arrivée dans notre unité de Séverine Bord (issue de l’UMR INRA Épidémi-
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ologie des Maladies Animales et Zoonotiques) pour m’intéresser à la répartition spatiale des
tiques. En particulier, nous cherchons à comprendre la répartition des tiques en fonction des
covariables du terrain afin de définir par la suite une méthode optimale d’échantillonnage.

Conclusion Mes travaux couvrent essentiellement trois domaines de compétence en statis-
tiques (modèles définis par équations différentielles, processus de comptage et modélisation de
réseaux) auxquels s’ajoutent des travaux non évoqués ici. J’ai donné en 2013 un tournant à ma
carrière en étant recrutée comme chargée de recherches à l’INRA dans une équipe ayant pour thé-
matique MOdélisation et Risque en Statistique Environnementale. Depuis, je cherche à donner
une couleur “environnement” à mes travaux tout en mettant à profit mes compétences acquises
jusque là en méthodologie statistique. Pour ce faire, je me suis impliquée dans diverses collab-
orations dans diverses domaines de l’environnement (écologie et biodiversité, animaux marins,
etc.). Pour les années à venir, je souhaiterais poursuivre cette orientation, en me spécialisant sur
certaines de ces applications.
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